Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.
ACS Nano. 2014 Dec 23;8(12):12587-600. doi: 10.1021/nn505431p. Epub 2014 Dec 4.
Developing high-capacitance organic gate dielectrics is critical for advances in electronic circuitry based on unconventional semiconductors. While high-dielectric constant molecular substances are known, the mechanism of dielectric response and the fundamental chemical design principles are not well understood. Using a plane-wave density functional theory formalism, we show that it is possible to map the atomic-scale dielectric profiles of molecule-based materials while capturing important bulk characteristics. For molecular films, this approach reveals how basic materials properties such as surface coverage density, molecular tilt angle, and π-system planarity can dramatically influence dielectric response. Additionally, relatively modest molecular backbone and substituent variations can be employed to substantially enhance film dielectric response. For dense surface coverages and proper molecular alignment, conjugated hydrocarbon chains can achieve dielectric constants of >8.0, more than 3 times that of analogous saturated chains, ∼2.5. However, this conjugation-related dielectric enhancement depends on proper molecular orientation and planarization, with enhancements up to 60% for proper molecular alignment with the applied field and an additional 30% for conformations such as coplanarity in extended π-systems. Conjugation length is not the only determinant of dielectric response, and appended polarizable high-Z substituents can increase molecular film response more than 2-fold, affording estimated capacitances of >9.0 μF/cm2. However, in large π-systems, polar substituent effects are substantially attenuated.
开发高电容有机栅介质对于基于非常规半导体的电子电路的发展至关重要。虽然已知高介电常数的分子物质,但介电响应的机制和基本的化学设计原则还不是很清楚。本文使用平面波密度泛函理论形式,我们展示了有可能在捕捉重要的体相特性的同时,绘制基于分子的材料的原子尺度介电分布。对于分子膜,这种方法揭示了基本材料特性(如表面覆盖密度、分子倾斜角和π系统的平面性)如何能显著影响介电响应。此外,相对适度的分子骨架和取代基变化可用于大幅提高薄膜介电响应。对于高密度的表面覆盖和适当的分子排列,共轭碳氢链可实现大于 8.0 的介电常数,比类似的饱和链高 3 倍,约为 2.5。然而,这种与共轭相关的介电增强取决于适当的分子取向和平整化,适当的分子与施加电场的取向一致时增强高达 60%,并且在伸展的π系统中如共面的构象时另外增加 30%。共轭长度不是介电响应的唯一决定因素,并且附加的可极化高 Z 取代基可使分子膜响应增加 2 倍以上,从而提供估计超过 9.0 μF/cm2 的电容。然而,在大的π系统中,极性取代基的影响会大大减弱。