Suppr超能文献

加权引导图像滤波。

Weighted guided image filtering.

出版信息

IEEE Trans Image Process. 2015 Jan;24(1):120-9. doi: 10.1109/TIP.2014.2371234. Epub 2014 Nov 14.

Abstract

It is known that local filtering-based edge preserving smoothing techniques suffer from halo artifacts. In this paper, a weighted guided image filter (WGIF) is introduced by incorporating an edge-aware weighting into an existing guided image filter (GIF) to address the problem. The WGIF inherits advantages of both global and local smoothing filters in the sense that: 1) the complexity of the WGIF is O(N) for an image with N pixels, which is same as the GIF and 2) the WGIF can avoid halo artifacts like the existing global smoothing filters. The WGIF is applied for single image detail enhancement, single image haze removal, and fusion of differently exposed images. Experimental results show that the resultant algorithms produce images with better visual quality and at the same time halo artifacts can be reduced/avoided from appearing in the final images with negligible increment on running times.

摘要

已知基于局部滤波的边缘保持平滑技术存在晕影伪像问题。本文通过在现有的导向图像滤波器(GIF)中引入边缘感知加权,提出了一种加权导向图像滤波器(WGIF)来解决该问题。WGIF 继承了全局和局部平滑滤波器的优点,具体体现在以下两个方面:1)对于具有 N 个像素的图像,WGIF 的复杂度为 O(N),与 GIF 相同;2)WGIF 可以避免像现有全局平滑滤波器那样出现晕影伪像。WGIF 可用于单图像细节增强、单图像去雾以及不同曝光图像的融合。实验结果表明,所提出的算法生成的图像具有更好的视觉质量,同时可以减少/避免晕影伪像的出现,而运行时间的增加可以忽略不计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验