Suppr超能文献

用于低光照原始图像增强的引导滤波器启发式网络。

Guided Filter-Inspired Network for Low-Light RAW Image Enhancement.

作者信息

Liu Xinyi, Zhao Qian

机构信息

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Sensors (Basel). 2025 Apr 22;25(9):2637. doi: 10.3390/s25092637.

Abstract

Low-light RAW image enhancement (LRIE) has attracted increased attention in recent years due to the demand for practical applications. Various deep learning-based methods have been proposed for dealing with this task, among which the fusion-based ones achieve state-of-the-art performance. However, current fusion-based methods do not sufficiently explore the physical correlations between source images and thus fail to sufficiently exploit the complementary information delivered by different sources. To alleviate this issue, we propose a Guided Filter-inspired Network (GFNet) for the LRIE task. The proposed GFNet is designed to fuse sources in a guided filter (GF)-like manner, with the coefficients inferred by the network, within both the image and feature domains. Inheriting the advantages of GF, the proposed method is able to capture more intrinsic correlations between source images and thus better fuse the contextual and textual information extracted from them, facilitating better detail preservation and noise reduction for LRIE. Experiments on benchmark LRIE datasets demonstrate the superiority of the proposed method. Furthermore, the extended applications of GFNet to guided low-light image enhancement tasks indicate its broad applicability.

摘要

近年来,由于实际应用的需求,低光RAW图像增强(LRIE)受到了越来越多的关注。已经提出了各种基于深度学习的方法来处理这项任务,其中基于融合的方法取得了最优性能。然而,当前基于融合的方法没有充分探索源图像之间的物理相关性,因此未能充分利用不同源所提供的互补信息。为了缓解这个问题,我们提出了一种用于LRIE任务的引导滤波器启发网络(GFNet)。所提出的GFNet旨在以类似于引导滤波器(GF)的方式融合源,网络在图像域和特征域中推断系数。该方法继承了GF的优点,能够捕捉源图像之间更多的内在相关性,从而更好地融合从它们中提取的上下文和纹理信息,有助于为LRIE更好地保留细节和降低噪声。在基准LRIE数据集上的实验证明了所提出方法的优越性。此外,GFNet在引导低光图像增强任务中的扩展应用表明了其广泛的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/902d/12074441/7b03257705d5/sensors-25-02637-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验