IEEE Trans Cybern. 2015 Oct;45(10):2105-18. doi: 10.1109/TCYB.2014.2365541. Epub 2014 Nov 13.
Distributed in-network inference plays a significant role in large-scale wireless sensor networks (WSNs) in various applications for distributed detection and estimation. While belief propagation (BP) holds great potential for forming a powerful underlying mechanism for such distributed in-network inferences in WSNs, one major challenge is how to systematically improve the energy efficiency of BP-based in-network inference in WSNs. In this paper, we first propose a systematic and rigorous data-driven approach to building information models for WSN applications upon which BP-based in-network inference can be effectively and efficiently performed. We then present a wavelet-based BP framework for multiresolution inference, with respect to our WSN information modeling, to further reduce WSNs' energy. We empirically evaluate our proposed WSN information modeling and wavelet-based BP framework/multiresolution inference using real-world sensor network data. The results demonstrate the merits of our proposed approaches.
分布式网络内推断在各种应用中在大规模无线传感器网络 (WSN) 中起着重要作用,用于分布式检测和估计。虽然置信传播 (BP) 在为 WSN 中的这种分布式网络内推断形成强大的基础机制方面具有巨大潜力,但一个主要挑战是如何系统地提高基于 BP 的 WSN 中网络内推断的能量效率。在本文中,我们首先提出了一种系统的、严格的数据驱动方法,为 WSN 应用构建信息模型,在此基础上可以有效地进行基于 BP 的网络内推断。然后,我们提出了一种基于小波的 BP 框架,用于多分辨率推断,针对我们的 WSN 信息建模,以进一步降低 WSN 的能量。我们使用真实的传感器网络数据对我们提出的 WSN 信息建模和基于小波的 BP 框架/多分辨率推断进行了实证评估。结果证明了我们提出的方法的优点。