Division of Environmental Sciences and Engineering, Colorado School of Mines, Center for Experimental Study of Subsurface Environmental Processes, 1500 Illinois St, Golden, CO 80401, USA.
Ground Water. 2010 Sep-Oct;48(5):771-80. doi: 10.1111/j.1745-6584.2010.00684.x. Epub 2010 Feb 22.
The emerging technology of wireless sensor networks (WSNs) is an integrated, distributed, wireless network of sensing devices. It has the potential to monitor dynamic hydrological and environmental processes more effectively than traditional monitoring and data acquisition techniques by providing environmental information at greater spatial and temporal resolutions. Furthermore, due to continuing high-performance computing development, these data may be introduced into increasingly robust and complex numerical models; for instance, the parameters of subsurface transport simulators may be automatically updated. Early field deployments and laboratory experiments conducted using in situ sensor technology and WSNs indicated significant fundamental issues concerning sensor and network hardware reliability-suggesting that investigations should first be conducted in controlled environments before field deployment. A first step in this validation process involves evaluating the predictive capability of a computational advection-dispersion transport model when incorporating concentration data from a WSN simulation. Data quality is a major concern, especially when sensor readings are automatically fed into data assimilation procedures. The appropriate employment of an independent WSN fault detection service can ensure that erroneous data (e.g., missing or anomalous values) do not mislead the model. Parameter estimation regularization techniques may then deal with remaining data noise. The primary purpose of this study is to determine the suitability of WSNs (and other in situ data delivery technologies) for use in contaminant transport modeling applications by conducting research in a realistic simulative environment.
无线传感器网络(WSN)这一新兴技术是一种集成的、分布式的无线感测器网络。它通过以更大的时空分辨率提供环境信息,有可能比传统的监测和数据采集技术更有效地监测动态水文学和环境过程。此外,由于高性能计算的持续发展,这些数据可能会被引入到越来越强大和复杂的数值模型中;例如,地下运移模拟器的参数可能会自动更新。早期使用原位传感器技术和 WSN 进行的现场部署和实验室实验表明,传感器和网络硬件可靠性方面存在重大的基本问题,这表明应首先在受控环境中进行调查,然后再进行现场部署。在这一验证过程中,首先要评估在包含 WSN 模拟浓度数据时,计算对流-弥散输运模型的预测能力。数据质量是一个主要关注点,尤其是当传感器读数自动输入数据同化程序时。适当采用独立的 WSN 故障检测服务可以确保错误数据(例如,缺失或异常值)不会误导模型。然后,参数估计正则化技术可以处理剩余的数据噪声。本研究的主要目的是通过在现实的模拟环境中进行研究,确定 WSN(和其他原位数据传输技术)在污染物运移建模应用中的适用性。