Suppr超能文献

MEF2转录因子在哺乳动物骨骼肌分化过程中调控不同的基因程序。

MEF2 transcription factors regulate distinct gene programs in mammalian skeletal muscle differentiation.

作者信息

Estrella Nelsa L, Desjardins Cody A, Nocco Sarah E, Clark Amanda L, Maksimenko Yevgeniy, Naya Francisco J

机构信息

From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215.

From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215

出版信息

J Biol Chem. 2015 Jan 9;290(2):1256-68. doi: 10.1074/jbc.M114.589838. Epub 2014 Nov 21.

Abstract

Skeletal muscle differentiation requires precisely coordinated transcriptional regulation of diverse gene programs that ultimately give rise to the specialized properties of this cell type. In Drosophila, this process is controlled, in part, by MEF2, the sole member of an evolutionarily conserved transcription factor family. By contrast, vertebrate MEF2 is encoded by four distinct genes, Mef2a, -b, -c, and -d, making it far more challenging to link this transcription factor to the regulation of specific muscle gene programs. Here, we have taken the first step in molecularly dissecting vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual MEF2 proteins in myoblasts. Whereas MEF2A is absolutely required for proper myoblast differentiation, MEF2B, -C, and -D were found to be dispensable for this process. Furthermore, despite the extensive redundancy, we show that mammalian MEF2 proteins regulate a significant subset of nonoverlapping gene programs. These results suggest that individual MEF2 family members are able to recognize specific targets among the entire cohort of MEF2-regulated genes in the muscle genome. These findings provide opportunities to modulate the activity of MEF2 isoforms and their respective gene programs in skeletal muscle homeostasis and disease.

摘要

骨骼肌分化需要多种基因程序进行精确协调的转录调控,这些基因程序最终赋予了这种细胞类型的特殊属性。在果蝇中,这一过程部分受MEF2控制,MEF2是一个进化上保守的转录因子家族的唯一成员。相比之下,脊椎动物的MEF2由四个不同的基因Mef2a、-b、-c和-d编码,这使得将这种转录因子与特定肌肉基因程序的调控联系起来变得更具挑战性。在这里,我们通过在成肌细胞中消耗单个MEF2蛋白,在分子层面剖析脊椎动物MEF2在骨骼肌分化中的转录功能方面迈出了第一步。虽然MEF2A对于成肌细胞的正常分化是绝对必需的,但发现MEF2B、-C和-D对于这一过程是可有可无的。此外,尽管存在广泛的冗余,我们表明哺乳动物的MEF2蛋白调控着一个显著的非重叠基因程序子集。这些结果表明,单个MEF2家族成员能够在肌肉基因组中MEF2调控的整个基因群中识别特定的靶点。这些发现为在骨骼肌稳态和疾病中调节MEF2亚型及其各自的基因程序的活性提供了机会。

相似文献

1
MEF2 transcription factors regulate distinct gene programs in mammalian skeletal muscle differentiation.
J Biol Chem. 2015 Jan 9;290(2):1256-68. doi: 10.1074/jbc.M114.589838. Epub 2014 Nov 21.
3
Mef2 and the skeletal muscle differentiation program.
Semin Cell Dev Biol. 2017 Dec;72:33-44. doi: 10.1016/j.semcdb.2017.11.020. Epub 2017 Nov 22.
5
Differential requirements for Myocyte Enhancer Factor-2 during adult myogenesis in Drosophila.
Dev Biol. 2012 Jan 15;361(2):191-207. doi: 10.1016/j.ydbio.2011.09.031. Epub 2011 Oct 10.
6
Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel regulation of DUSP6 by p38MAPK-MEF2 signaling.
Nucleic Acids Res. 2014 Oct;42(18):11349-62. doi: 10.1093/nar/gku813. Epub 2014 Sep 12.
8
Requirement of MEF2A, C, and D for skeletal muscle regeneration.
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4109-14. doi: 10.1073/pnas.1401732111. Epub 2014 Mar 3.
10
miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation.
J Biol Chem. 2011 Oct 14;286(41):35339-35346. doi: 10.1074/jbc.M111.273276. Epub 2011 Aug 25.

引用本文的文献

1
RNA-seq analysis of blood from cave- and surface-dwelling morphs reveal diverse transcriptomic responses to normoxic rearing.
Front Physiol. 2025 Jul 17;16:1617136. doi: 10.3389/fphys.2025.1617136. eCollection 2025.
2
Control of circadian muscle glucose metabolism through the BMAL1-HIF axis in obesity.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2424046122. doi: 10.1073/pnas.2424046122. Epub 2025 Mar 24.
3
The Molecular and Biological Function of MEF2D in Leukemia.
Adv Exp Med Biol. 2024;1459:379-403. doi: 10.1007/978-3-031-62731-6_17.
4
Genome-wide analysis reveals genomic diversity and signatures of selection in Qinchuan beef cattle.
BMC Genomics. 2024 Jun 5;25(1):558. doi: 10.1186/s12864-024-10482-0.
5
6
Evolutionary conserved circular MEF2A RNAs regulate myogenic differentiation and skeletal muscle development.
PLoS Genet. 2023 Sep 7;19(9):e1010923. doi: 10.1371/journal.pgen.1010923. eCollection 2023 Sep.
7
Effect of Bovine Gene Expression on Proliferation and Apoptosis of Myoblast Cells.
Genes (Basel). 2023 Jul 22;14(7):1498. doi: 10.3390/genes14071498.
8
MicroRNA-668-3p inhibits myoblast proliferation and differentiation by targeting Appl1.
BMC Genomics. 2023 Jul 24;24(1):415. doi: 10.1186/s12864-023-09431-0.
10
USP18 is an essential regulator of muscle cell differentiation and maturation.
Cell Death Dis. 2023 Mar 31;14(3):231. doi: 10.1038/s41419-023-05725-z.

本文引用的文献

1
Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel regulation of DUSP6 by p38MAPK-MEF2 signaling.
Nucleic Acids Res. 2014 Oct;42(18):11349-62. doi: 10.1093/nar/gku813. Epub 2014 Sep 12.
2
Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells.
Biochem Biophys Res Commun. 2014 Sep 26;452(3):728-33. doi: 10.1016/j.bbrc.2014.08.143. Epub 2014 Sep 4.
3
Myogenesis defect due to Toca-1 knockdown can be suppressed by expression of N-WASP.
Biochim Biophys Acta. 2014 Sep;1843(9):1930-41. doi: 10.1016/j.bbamcr.2014.05.008. Epub 2014 May 24.
4
Requirement of MEF2A, C, and D for skeletal muscle regeneration.
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4109-14. doi: 10.1073/pnas.1401732111. Epub 2014 Mar 3.
5
Gene regulatory networks and transcriptional mechanisms that control myogenesis.
Dev Cell. 2014 Feb 10;28(3):225-38. doi: 10.1016/j.devcel.2013.12.020.
6
Transcriptional networks regulating the costamere, sarcomere, and other cytoskeletal structures in striated muscle.
Cell Mol Life Sci. 2014 May;71(9):1641-56. doi: 10.1007/s00018-013-1512-0. Epub 2013 Nov 12.
7
Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation.
Genes Dev. 2013 Jun 1;27(11):1247-59. doi: 10.1101/gad.215400.113. Epub 2013 May 30.
8
C. elegans DPY-19 is a C-mannosyltransferase glycosylating thrombospondin repeats.
Mol Cell. 2013 Apr 25;50(2):295-302. doi: 10.1016/j.molcel.2013.03.003. Epub 2013 Apr 4.
9
MEF2A regulates the Gtl2-Dio3 microRNA mega-cluster to modulate WNT signaling in skeletal muscle regeneration.
Development. 2013 Jan 1;140(1):31-42. doi: 10.1242/dev.081851. Epub 2012 Nov 15.
10
Regulation and physiological roles of the calpain system in muscular disorders.
Cardiovasc Res. 2012 Oct 1;96(1):11-22. doi: 10.1093/cvr/cvs157. Epub 2012 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验