Suppr超能文献

使用时间优化傅里叶编码算法减少多维核磁共振中的采集时间。

Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm.

作者信息

Zhang Zhiyong, Smith Pieter E S, Frydman Lucio

机构信息

Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

J Chem Phys. 2014 Nov 21;141(19):194201. doi: 10.1063/1.4901561.

Abstract

Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. By porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.

摘要

加快多维核磁共振(NMR)谱的采集是当代NMR领域的一个重要课题,在高通量研究以及对亚稳样品的分析中起着核心作用。人们已经开发出了多种快速NMR技术,包括基于非均匀采样和哈达玛编码的方法,这些方法克服了基于快速傅里叶变换(FFT)方法的方案中固有的长时间采样问题。在此,我们探索一种利用先验知识的替代快速采集方法的潜力,以定制多色脉冲和定制时间延迟,从而对NMR实验间接域进行高效傅里叶编码。通过将间接域的编码转移到激发过程,该策略避免了与非均匀采样方案相关的潜在伪影,并使用与间接维度中存在的共振数量相等的最少扫描次数。一个额外的便利之处在于,可以使用常规的二维FFT来处理生成的数据。在奎宁以及抗炎药物异丁基丙酸酚酸上采集二维异核相关NMR谱,说明了该新方法的性能。这种方法可以很容易地实现自动化,以处理复杂样品,例如代谢组学、细胞内以及体内NMR应用中出现的样品,在这些应用中,速度和时间稳定性往往是主要关注点。

相似文献

2
A double-Fourier approach to enhance the efficiency of the indirect domain sampling in 2D NMR.
Magn Reson Chem. 2011 Aug;49(8):477-82. doi: 10.1002/mrc.2769. Epub 2011 Jul 14.
3
A fast approach to 3D HSQC-based spectroscopy based on a Fourier phase encoding of pre-targeted resonances.
J Magn Reson. 2017 Jan;274:95-102. doi: 10.1016/j.jmr.2016.11.011. Epub 2016 Nov 21.
4
Improving the sensitivity of FT-NMR spectroscopy by apodization weighted sampling.
J Biomol NMR. 2019 Apr;73(3-4):155-165. doi: 10.1007/s10858-019-00243-7. Epub 2019 May 2.
5
Fast multi-dimensional NMR acquisition and processing using the sparse FFT.
J Biomol NMR. 2015 Sep;63(1):9-19. doi: 10.1007/s10858-015-9952-5. Epub 2015 Jun 30.
6
Accelerating multidimensional NMR and MRI experiments using iterated maps.
J Magn Reson. 2013 Dec;237:100-109. doi: 10.1016/j.jmr.2013.09.005. Epub 2013 Sep 21.
7
Perspectives in magnetic resonance: NMR in the post-FFT era.
J Magn Reson. 2014 Apr;241:60-73. doi: 10.1016/j.jmr.2013.11.014.
8
Processing of ND NMR spectra sampled in polar coordinates: a simple Fourier transform instead of a reconstruction.
J Biomol NMR. 2006 Sep;36(1):45-54. doi: 10.1007/s10858-006-9066-1. Epub 2006 Sep 9.
9
Gridding and fast Fourier transformation on non-uniformly sparse sampled multidimensional NMR data.
J Magn Reson. 2010 May;204(1):165-8. doi: 10.1016/j.jmr.2010.02.009. Epub 2010 Feb 20.
10
Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications.
J Magn Reson. 2011 Apr;209(2):352-8. doi: 10.1016/j.jmr.2011.01.017. Epub 2011 Jan 21.

引用本文的文献

1
Recent Advances in NMR-Based Metabolomics.
Anal Chem. 2017 Jan 3;89(1):490-510. doi: 10.1021/acs.analchem.6b04420. Epub 2016 Dec 2.
2
Efficient spectroscopic imaging by an optimized encoding of pretargeted resonances.
Magn Reson Med. 2017 Feb;77(2):511-519. doi: 10.1002/mrm.26161. Epub 2016 Feb 23.
3
MRSI via fully-refocused spatiotemporal encoding with polychromatic spectral pulses.
J Magn Reson. 2015 Oct;259:24-31. doi: 10.1016/j.jmr.2015.07.008. Epub 2015 Aug 6.
4
Mitochondrial responses to extreme environments: insights from metabolomics.
Extrem Physiol Med. 2015 May 4;4:7. doi: 10.1186/s13728-015-0026-9. eCollection 2015.

本文引用的文献

1
Nonuniform sampling and maximum entropy reconstruction in multidimensional NMR.
Acc Chem Res. 2014 Feb 18;47(2):708-17. doi: 10.1021/ar400244v. Epub 2014 Jan 9.
2
Coherent dynamical recoupling of diffusion-driven decoherence in magnetic resonance.
Phys Rev Lett. 2013 Aug 23;111(8):080404. doi: 10.1103/PhysRevLett.111.080404. Epub 2013 Aug 20.
3
Ultrafast NMR T1 relaxation measurements: probing molecular properties in real time.
Chemphyschem. 2013 Sep 16;14(13):3138-45. doi: 10.1002/cphc.201300436. Epub 2013 Jul 22.
6
A comparison of convex and non-convex compressed sensing applied to multidimensional NMR.
J Magn Reson. 2012 Oct;223:1-10. doi: 10.1016/j.jmr.2012.08.001. Epub 2012 Aug 16.
7
Speeding up sequence specific assignment of IDPs.
J Biomol NMR. 2012 Aug;53(4):293-301. doi: 10.1007/s10858-012-9639-0. Epub 2012 Jun 10.
8
A double-Fourier approach to enhance the efficiency of the indirect domain sampling in 2D NMR.
Magn Reson Chem. 2011 Aug;49(8):477-82. doi: 10.1002/mrc.2769. Epub 2011 Jul 14.
9
Accelerated NMR spectroscopy by using compressed sensing.
Angew Chem Int Ed Engl. 2011 Jun 6;50(24):5556-9. doi: 10.1002/anie.201100370. Epub 2011 Apr 29.
10
Structural analysis of glycans by NMR chemical shift prediction.
Anal Chem. 2011 Mar 1;83(5):1514-7. doi: 10.1021/ac1032534. Epub 2011 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验