Ge Yifan, Siegel Amanda P, Jordan Rainer, Naumann Christoph A
Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana.
Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana; Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, Indiana.
Biophys J. 2014 Nov 4;107(9):2101-11. doi: 10.1016/j.bpj.2014.09.021.
Lipid heterogeneities, such as lipid rafts, are widely considered to be important for the sequestering of membrane proteins in plasma membranes, thereby influencing membrane protein functionality. However, the underlying mechanisms of such sequestration processes remain elusive, in part, due to the small size and often transient nature of these functional membrane heterogeneities in cellular membranes. To overcome these challenges, here we report the sequestration behavior of urokinase receptor (uPAR), a glycosylphosphatidylinositol-anchored protein, in a planar model membrane platform with raft-mimicking lipid mixtures of well-defined compositions using a powerful optical imaging platform consisting of confocal spectroscopy XY-scans, photon counting histogram, and fluorescence correlation spectroscopy analyses. This methodology provides parallel information about receptor sequestration, oligomerization state, and lateral mobility with single molecule sensitivity. Most notably, our experiments demonstrate that moderate changes in uPAR sequestration are not only associated with modifications in uPAR dimerization levels, but may also be linked to ligand-mediated allosteric changes of these membrane receptors. Our data show that these modifications in uPAR sequestration can be induced by exposure to specific ligands (urokinase plasminogen activator, vitronectin), but not via adjustment of the cholesterol level in the planar model membrane system. Good agreement of our key findings with published results on cell membranes confirms the validity of our model membrane approach. We hypothesize that the observed mechanism of receptor translocation in the presence of raft-mimicking lipid mixtures is also applicable to other glycosylphosphatidylinositol-anchored proteins.
脂质异质性,如脂筏,被广泛认为对于质膜中膜蛋白的隔离很重要,从而影响膜蛋白的功能。然而,这种隔离过程的潜在机制仍然难以捉摸,部分原因是这些细胞膜中功能性膜异质性的尺寸小且通常具有瞬时性。为了克服这些挑战,我们在此报告了尿激酶受体(uPAR)(一种糖基磷脂酰肌醇锚定蛋白)在平面模型膜平台中的隔离行为,该平台使用由共聚焦光谱XY扫描、光子计数直方图和荧光相关光谱分析组成的强大光学成像平台,含有成分明确的模拟脂筏的脂质混合物。这种方法以单分子灵敏度提供了关于受体隔离、寡聚化状态和横向流动性的并行信息。最值得注意的是,我们的实验表明,uPAR隔离的适度变化不仅与uPAR二聚化水平的改变有关,还可能与这些膜受体的配体介导的变构变化有关。我们的数据表明,uPAR隔离的这些修饰可以通过暴露于特定配体(尿激酶纤溶酶原激活剂、玻连蛋白)来诱导,但不是通过调节平面模型膜系统中的胆固醇水平。我们的关键发现与已发表的关于细胞膜的结果高度一致,证实了我们的模型膜方法的有效性。我们假设,在存在模拟脂筏的脂质混合物的情况下观察到的受体易位机制也适用于其他糖基磷脂酰肌醇锚定蛋白。