Wang Jingkui, Lefranc Marc, Thommen Quentin
Laboratoire de Physique des Lasers, Atomes, et Molécules, Centre National de la Recherche Scientifique, UMR8523, Université Lille 1, Villeneuve d'Ascq, France.
Laboratoire de Physique des Lasers, Atomes, et Molécules, Centre National de la Recherche Scientifique, UMR8523, Université Lille 1, Villeneuve d'Ascq, France.
Biophys J. 2014 Nov 18;107(10):2403-16. doi: 10.1016/j.bpj.2014.09.042.
Biochemical reaction networks are subjected to large fluctuations attributable to small molecule numbers, yet underlie reliable biological functions. Thus, it is important to understand how regularity can emerge from noise. Here, we study the stochastic dynamics of a self-repressing gene with arbitrarily long or short response time. We find that when the mRNA and protein half-lives are approximately equal to the gene response time, fluctuations can induce relatively regular oscillations in the protein concentration. To gain insight into this phenomenon at the crossroads of determinism and stochasticity, we use an intermediate theoretical approach, based on a moment-closure approximation of the master equation, which allows us to take into account the binary character of gene activity. We thereby obtain differential equations that describe how nonlinearity can feed-back fluctuations into the mean-field equations to trigger oscillations. Finally, our results suggest that the self-repressing Hes1 gene circuit exploits this phenomenon to generate robust oscillations, inasmuch as its time constants satisfy precisely the conditions we have identified.
生化反应网络由于小分子数量而受到大幅波动影响,但却支撑着可靠的生物学功能。因此,了解规律如何从噪声中产生很重要。在这里,我们研究了具有任意长或短响应时间的自抑制基因的随机动力学。我们发现,当mRNA和蛋白质半衰期近似等于基因响应时间时,波动可在蛋白质浓度中诱导出相对规则的振荡。为了在确定性与随机性的交叉点深入了解这一现象,我们采用一种中间理论方法,该方法基于主方程的矩闭合近似,使我们能够考虑基因活性的二元特征。由此我们得到了描述非线性如何将波动反馈到平均场方程以触发振荡的微分方程。最后,我们的结果表明,自抑制的Hes1基因回路利用了这一现象来产生稳健的振荡,因为其时间常数恰好满足我们所确定的条件。