Suppr超能文献

自抑制基因内在波动诱导的随机振荡

Stochastic oscillations induced by intrinsic fluctuations in a self-repressing gene.

作者信息

Wang Jingkui, Lefranc Marc, Thommen Quentin

机构信息

Laboratoire de Physique des Lasers, Atomes, et Molécules, Centre National de la Recherche Scientifique, UMR8523, Université Lille 1, Villeneuve d'Ascq, France.

Laboratoire de Physique des Lasers, Atomes, et Molécules, Centre National de la Recherche Scientifique, UMR8523, Université Lille 1, Villeneuve d'Ascq, France.

出版信息

Biophys J. 2014 Nov 18;107(10):2403-16. doi: 10.1016/j.bpj.2014.09.042.

Abstract

Biochemical reaction networks are subjected to large fluctuations attributable to small molecule numbers, yet underlie reliable biological functions. Thus, it is important to understand how regularity can emerge from noise. Here, we study the stochastic dynamics of a self-repressing gene with arbitrarily long or short response time. We find that when the mRNA and protein half-lives are approximately equal to the gene response time, fluctuations can induce relatively regular oscillations in the protein concentration. To gain insight into this phenomenon at the crossroads of determinism and stochasticity, we use an intermediate theoretical approach, based on a moment-closure approximation of the master equation, which allows us to take into account the binary character of gene activity. We thereby obtain differential equations that describe how nonlinearity can feed-back fluctuations into the mean-field equations to trigger oscillations. Finally, our results suggest that the self-repressing Hes1 gene circuit exploits this phenomenon to generate robust oscillations, inasmuch as its time constants satisfy precisely the conditions we have identified.

摘要

生化反应网络由于小分子数量而受到大幅波动影响,但却支撑着可靠的生物学功能。因此,了解规律如何从噪声中产生很重要。在这里,我们研究了具有任意长或短响应时间的自抑制基因的随机动力学。我们发现,当mRNA和蛋白质半衰期近似等于基因响应时间时,波动可在蛋白质浓度中诱导出相对规则的振荡。为了在确定性与随机性的交叉点深入了解这一现象,我们采用一种中间理论方法,该方法基于主方程的矩闭合近似,使我们能够考虑基因活性的二元特征。由此我们得到了描述非线性如何将波动反馈到平均场方程以触发振荡的微分方程。最后,我们的结果表明,自抑制的Hes1基因回路利用了这一现象来产生稳健的振荡,因为其时间常数恰好满足我们所确定的条件。

相似文献

1
Stochastic oscillations induced by intrinsic fluctuations in a self-repressing gene.
Biophys J. 2014 Nov 18;107(10):2403-16. doi: 10.1016/j.bpj.2014.09.042.
2
The influence of nuclear compartmentalisation on stochastic dynamics of self-repressing gene expression.
J Theor Biol. 2017 Jul 7;424:55-72. doi: 10.1016/j.jtbi.2017.05.003. Epub 2017 May 5.
4
Stochastic simulations of the repressilator circuit.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):051917. doi: 10.1103/PhysRevE.76.051917. Epub 2007 Nov 21.
5
Conditional Moment Closure Schemes for Studying Stochastic Dynamics of Genetic Circuits.
IEEE Trans Biomed Circuits Syst. 2015 Aug;9(4):518-26. doi: 10.1109/TBCAS.2015.2453158. Epub 2015 Aug 27.
8
Stochastic expression dynamics of a transcription factor revealed by single-molecule noise analysis.
Nat Struct Mol Biol. 2012 Aug;19(8):797-802. doi: 10.1038/nsmb.2336. Epub 2012 Jul 1.
9
A moment-convergence method for stochastic analysis of biochemical reaction networks.
J Chem Phys. 2016 May 21;144(19):194109. doi: 10.1063/1.4950767.
10
A variational approach to the stochastic aspects of cellular signal transduction.
J Chem Phys. 2006 Sep 28;125(12):124106. doi: 10.1063/1.2353835.

引用本文的文献

1
Single-cell transcriptional dynamics in a living vertebrate.
bioRxiv. 2024 Jan 4:2024.01.03.574108. doi: 10.1101/2024.01.03.574108.
3
Oscillations in well-mixed, deterministic feedback systems: Beyond ring oscillators.
J Theor Biol. 2019 Nov 21;481:44-53. doi: 10.1016/j.jtbi.2019.05.004. Epub 2019 May 3.
4
Optimization-based synthesis of stochastic biocircuits with statistical specifications.
J R Soc Interface. 2018 Jan;15(138). doi: 10.1098/rsif.2017.0709.
5
Graph-facilitated resonant mode counting in stochastic interaction networks.
J R Soc Interface. 2017 Dec;14(137). doi: 10.1098/rsif.2017.0447.
6
Promoters Architecture-Based Mechanism for Noise-Induced Oscillations in a Single-Gene Circuit.
PLoS One. 2016 Mar 9;11(3):e0151086. doi: 10.1371/journal.pone.0151086. eCollection 2016.
7
Mean field analysis of a spatial stochastic model of a gene regulatory network.
J Math Biol. 2015 Oct;71(4):921-59. doi: 10.1007/s00285-014-0837-0. Epub 2014 Oct 17.

本文引用的文献

1
Oscillation, cooperativity, and intermediates in the self-repressing gene.
Chem Phys Lett. 2010 Apr 26;490(4):216-220. doi: 10.1016/j.cplett.2010.03.029. Epub 2010 Mar 15.
2
Stochastic single-gene autoregulation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061913. doi: 10.1103/PhysRevE.85.061913. Epub 2012 Jun 19.
3
Steady-state fluctuations of a genetic feedback loop: an exact solution.
J Chem Phys. 2012 Jul 21;137(3):035104. doi: 10.1063/1.4736721.
4
On the minimization of fluctuations in the response times of autoregulatory gene networks.
Biophys J. 2011 Sep 21;101(6):1297-306. doi: 10.1016/j.bpj.2011.08.005. Epub 2011 Sep 20.
5
Dynamic analysis of stochastic transcription cycles.
PLoS Biol. 2011 Apr;9(4):e1000607. doi: 10.1371/journal.pbio.1000607. Epub 2011 Apr 12.
6
Mammalian genes are transcribed with widely different bursting kinetics.
Science. 2011 Apr 22;332(6028):472-4. doi: 10.1126/science.1198817. Epub 2011 Mar 17.
7
Modeling oscillatory control in NF-κB, p53 and Wnt signaling.
Curr Opin Genet Dev. 2010 Dec;20(6):656-64. doi: 10.1016/j.gde.2010.08.008. Epub 2010 Oct 9.
8
Functional roles for noise in genetic circuits.
Nature. 2010 Sep 9;467(7312):167-73. doi: 10.1038/nature09326.
9
A comparative analysis of synthetic genetic oscillators.
J R Soc Interface. 2010 Nov 6;7(52):1503-24. doi: 10.1098/rsif.2010.0183. Epub 2010 Jun 30.
10
Combinatorial gene regulation using auto-regulation.
PLoS Comput Biol. 2010 Jun 10;6(6):e1000813. doi: 10.1371/journal.pcbi.1000813.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验