Suppr超能文献

自调节基因网络响应时间波动最小化问题研究。

On the minimization of fluctuations in the response times of autoregulatory gene networks.

机构信息

Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India.

出版信息

Biophys J. 2011 Sep 21;101(6):1297-306. doi: 10.1016/j.bpj.2011.08.005. Epub 2011 Sep 20.

Abstract

The temporal dynamics of the concentrations of several proteins are tightly regulated, particularly for critical nodes in biological networks such as transcription factors. An important mechanism to control transcription factor levels is through autoregulatory feedback loops where the protein can bind its own promoter. Here we use theoretical tools and computational simulations to further our understanding of transcription-factor autoregulatory loops. We show that the stochastic dynamics of feedback and mRNA synthesis can significantly influence the speed of response of autoregulatory genetic networks toward external stimuli. The fluctuations in the response-times associated with the accumulation of the transcription factor in the presence of negative or positive autoregulation can be minimized by confining the ratio of mRNA/protein lifetimes within 1:10. This predicted range of mRNA/protein lifetime agrees with ranges observed empirically in prokaryotes and eukaryotes. The theory can quantitatively and systematically account for the influence of regulatory element binding and unbinding dynamics on the transcription-factor concentration rise-times. The simulation results are robust against changes in several system parameters of the gene expression machinery.

摘要

几种蛋白质浓度的时间动态受到严格调控,特别是对于生物网络中的关键节点,如转录因子。控制转录因子水平的一个重要机制是通过自身反馈调节环,其中蛋白质可以结合其自身的启动子。在这里,我们使用理论工具和计算模拟来进一步了解转录因子自身调节环。我们表明,反馈和 mRNA 合成的随机动力学可以显著影响自身调节遗传网络对外界刺激的响应速度。通过将 mRNA/蛋白质寿命比限制在 1:10 内,可以最小化在负或正自身调节存在下转录因子积累时与响应时间相关的波动。这种预测的 mRNA/蛋白质寿命范围与在原核生物和真核生物中观察到的范围一致。该理论可以定量和系统地解释调节元件结合和解离动力学对转录因子浓度上升时间的影响。模拟结果对基因表达机制的几个系统参数的变化具有鲁棒性。

相似文献

1
On the minimization of fluctuations in the response times of autoregulatory gene networks.
Biophys J. 2011 Sep 21;101(6):1297-306. doi: 10.1016/j.bpj.2011.08.005. Epub 2011 Sep 20.
2
Optimal feedback strength for noise suppression in autoregulatory gene networks.
Biophys J. 2009 May 20;96(10):4013-23. doi: 10.1016/j.bpj.2009.02.064.
3
Holimap: an accurate and efficient method for solving stochastic gene network dynamics.
Nat Commun. 2024 Aug 2;15(1):6557. doi: 10.1038/s41467-024-50716-z.
4
Constructing the energy landscape for genetic switching system driven by intrinsic noise.
PLoS One. 2014 Feb 13;9(2):e88167. doi: 10.1371/journal.pone.0088167. eCollection 2014.
5
A synthetic gene circuit for measuring autoregulatory feedback control.
Integr Biol (Camb). 2016 Apr 18;8(4):546-55. doi: 10.1039/c5ib00230c. Epub 2016 Jan 5.
6
Threshold-dominated regulation hides genetic variation in gene expression networks.
BMC Syst Biol. 2007 Dec 6;1:57. doi: 10.1186/1752-0509-1-57.
7
Theory on the dynamics of feedforward loops in the transcription factor networks.
PLoS One. 2012;7(7):e41027. doi: 10.1371/journal.pone.0041027. Epub 2012 Jul 20.
8
Multi-modality in gene regulatory networks with slow promoter kinetics.
PLoS Comput Biol. 2019 Feb 19;15(2):e1006784. doi: 10.1371/journal.pcbi.1006784. eCollection 2019 Feb.
9
The influence of nuclear compartmentalisation on stochastic dynamics of self-repressing gene expression.
J Theor Biol. 2017 Jul 7;424:55-72. doi: 10.1016/j.jtbi.2017.05.003. Epub 2017 May 5.
10
Negative autoregulation speeds the response times of transcription networks.
J Mol Biol. 2002 Nov 8;323(5):785-93. doi: 10.1016/s0022-2836(02)00994-4.

引用本文的文献

1
2
Multiple transcription auto regulatory loops can act as robust oscillators and decision-making motifs.
Comput Struct Biotechnol J. 2022 Sep 13;20:5115-5135. doi: 10.1016/j.csbj.2022.08.065. eCollection 2022.
3
Stochastic timing in gene expression for simple regulatory strategies.
Nucleic Acids Res. 2017 Feb 17;45(3):1069-1078. doi: 10.1093/nar/gkw1235.
4
Stochastic oscillations induced by intrinsic fluctuations in a self-repressing gene.
Biophys J. 2014 Nov 18;107(10):2403-16. doi: 10.1016/j.bpj.2014.09.042.
5
Theory on the dynamics of oscillatory loops in the transcription factor networks.
PLoS One. 2014 Aug 11;9(8):e104328. doi: 10.1371/journal.pone.0104328. eCollection 2014.
6
A combination of transcriptional and microRNA regulation improves the stability of the relative concentrations of target genes.
PLoS Comput Biol. 2014 Feb 27;10(2):e1003490. doi: 10.1371/journal.pcbi.1003490. eCollection 2014 Feb.
7
Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells.
Mol Cell. 2013 Mar 7;49(5):934-46. doi: 10.1016/j.molcel.2013.01.007. Epub 2013 Feb 8.
8
Epigenetics and the developmental origins of inflammatory bowel diseases.
Can J Gastroenterol. 2012 Dec;26(12):909-15. doi: 10.1155/2012/526408.
9
Theory on the dynamics of feedforward loops in the transcription factor networks.
PLoS One. 2012;7(7):e41027. doi: 10.1371/journal.pone.0041027. Epub 2012 Jul 20.
10
Speed-dependent cellular decision making in nonequilibrium genetic circuits.
PLoS One. 2012;7(3):e32779. doi: 10.1371/journal.pone.0032779. Epub 2012 Mar 13.

本文引用的文献

2
Optimal feedback strength for noise suppression in autoregulatory gene networks.
Biophys J. 2009 May 20;96(10):4013-23. doi: 10.1016/j.bpj.2009.02.064.
3
Facilitated diffusion with DNA coiling.
Proc Natl Acad Sci U S A. 2009 May 19;106(20):8204-8. doi: 10.1073/pnas.0903293106. Epub 2009 May 6.
4
Analytical distributions for stochastic gene expression.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17256-61. doi: 10.1073/pnas.0803850105. Epub 2008 Nov 6.
5
Robustness analysis of cellular memory in an autoactivating positive feedback system.
FEBS Lett. 2008 Nov 12;582(27):3776-82. doi: 10.1016/j.febslet.2008.10.005. Epub 2008 Oct 16.
6
Colored extrinsic fluctuations and stochastic gene expression.
Mol Syst Biol. 2008;4:196. doi: 10.1038/msb.2008.31. Epub 2008 May 6.
7
Generalized theory of site-specific DNA-protein interactions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011901. doi: 10.1103/PhysRevE.76.011901. Epub 2007 Jul 2.
8
Noisy information processing through transcriptional regulation.
Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7151-6. doi: 10.1073/pnas.0608963104. Epub 2007 Apr 9.
9
Noise in timing and precision of gene activities in a genetic cascade.
Mol Syst Biol. 2007;3:71. doi: 10.1038/msb4100113. Epub 2007 Feb 13.
10
Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.
Nature. 2006 Jun 15;441(7095):840-6. doi: 10.1038/nature04785. Epub 2006 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验