Santoro Amato, Alvino Federico, Antonelli Giovanni, Cameli Matteo, Bertini Matteo, Molle Roberta, Mondillo Sergio
Division of Cardiology, University of Siena, Siena, Tuscany, Italy.
Department of Cardiology, St. Anna Hospital Ferrara, Ferrara, Italy.
Echocardiography. 2015 Jun;32(6):920-7. doi: 10.1111/echo.12791. Epub 2014 Nov 22.
The increase in systolic indexes from rest (R) to exercise is achieved by combination of enhanced heart rate (HR) and stroke volume (SV). Aim of this study was to evaluate left ventricular (LV) longitudinal, circumferential, and torsional components immediately after a maximal intensity exercise (ME) by speckle tracking echocardiography (STE).
Twenty-seven male water polo players performed an ME that consisted of 6 repeats of 100 m freestyle swim sets. An echocardiographic examination was performed before and after ME. STE was performed to obtain the analysis of LV myocardial deformation.
There were no differences between R and ME regarding LV longitudinal strains (PVLS). Apical circumferential LV strain (AVCS) and LV longitudinal strain rate (SR) increased at ME with respect to R (R: -23.1 ± 4.9%; ME: -28.4 ± 7.6%, P < 0.05; R: -1.1 ± 0.1/sec, ME: -1.5 ± 0.2/sec, P < 0.01). LV twisting (LVT) and untwisting (UTW) increased at ME (R: 7.9 ± 2.4°, ME: 14.2 ± 3.2°, P < 0.001; R: -107.2 ± 47.4; ME: -158.5 ± 61.5 °/sec; P < 0.01). At ME, apical rotation (Arot) had higher values than R values (5.4 ± 3.0°; 10.0 ± 6.0°; P < 0.01) and time-to-peak (TTP) of apical segments are earlier than all TTP. SV was related to LVT (r = 0.56, P = 0.01), AVCS (r = -0.59, P = 0.005) and Arot (r = 0.46, P = 0.04). At multivariate analysis, AVCS was the independent predictor of SV (β = -0.58; P < 0.05).
Apical fibers and LVT give the main contribution to systolic components at ME. The storage of energy during LVT, released during early diastole, seems to be a fundamental mechanism to support diastolic filling during maximal exercise.
收缩期指标从静息状态(R)到运动时的增加是通过心率(HR)和每搏输出量(SV)的增强共同实现的。本研究的目的是通过斑点追踪超声心动图(STE)评估最大强度运动(ME)后即刻左心室(LV)的纵向、圆周和扭转分量。
27名男性水球运动员进行了一次ME,包括6组重复的100米自由泳。在ME前后进行超声心动图检查。采用STE获取LV心肌变形分析。
LV纵向应变(PVLS)在静息状态和最大强度运动之间无差异。与静息状态相比,最大强度运动时心尖圆周LV应变(AVCS)和LV纵向应变率(SR)增加(静息状态:-23.1±4.9%;最大强度运动:-28.4±7.6%,P<0.05;静息状态:-1.1±0.1/秒,最大强度运动:-1.5±0.2/秒,P<0.01)。最大强度运动时LV扭转(LVT)和去扭转(UTW)增加(静息状态:7.9±2.4°,最大强度运动:14.2±3.2°,P<0.001;静息状态:-107.2±47.4;最大强度运动:-158.5±61.5°/秒;P<0.01)。在最大强度运动时,心尖旋转(Arot)值高于静息状态值(5.4±3.0°;10.0±6.0°;P<0.01),心尖节段的达峰时间(TTP)早于所有TTP。SV与LVT(r=0.56,P=0.01)、AVCS(r=-0.59,P=0.005)和Arot(r=0.46,P=0.04)相关。在多变量分析中,AVCS是SV的独立预测因子(β=-0.58;P<\uN{003C}0.05)。
心尖纤维和LVT对最大强度运动时的收缩期分量起主要作用。LVT期间储存的能量在舒张早期释放,似乎是支持最大运动时舒张期充盈的基本机制。