Suppr超能文献

周期性机械应力调节施万细胞的神经营养和髓鞘形成基因表达。

Cyclic mechanical stress modulates neurotrophic and myelinating gene expression of Schwann cells.

机构信息

State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.

出版信息

Cell Prolif. 2015 Feb;48(1):59-66. doi: 10.1111/cpr.12151. Epub 2014 Nov 24.

Abstract

OBJECTIVES

This study aimed to investigate the response of Schwann cells to cyclic compressive and tensile stresses of different durations of stimulation.

MATERIALS AND METHODS

RSC96 cells were subjected to cyclic tensile stress or compressive stress; for either, cells in five groups were treated for 0, 1, 2, 24 and 48 h respectively. Enzyme-linked immunosorbent assay was conducted to detect secretion of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 and neurotrophin-4 in the culture medium. Real-time PCR was conducted to quantify mRNA expression of neurotrophins including NGF, BDNF, neurotrophin-3 and neurotrophin-4, and myelin-related genes including Sox10, Krox20, neuregulin 1, NCAM, N-cadherin, P0, MAG and MBP. Immunofluorescent staining was performed to visualize Krox20 and F-actin in the tensile groups.

RESULTS

Within 24 h, cells treated with cyclic tensile stress expressed and secreted significantly more BDNF, while cyclic compression down-regulated BDNF expression. Cells treated with both tensile and compressive stress down-regulated expression of NRG1, NCAM, Krox20 and Sox10 at all time points. Expression of N-cadherin was not affected by either stretch or compression. F-actin was down-regulated by tensile stress.

CONCLUSIONS

Both tensile and compressive loading down-regulated expression of several important myelin-related Schwann cells genes and thus facilitated demyelination. Tensile stress meanwhile promoted secretion of BDNF by Schwann cells within 24 h, which may contribute to maintenance and repair of damaged axons. These effects of mechanical stress might have been mediated by the actin cytoskeleton.

摘要

目的

本研究旨在探讨雪旺细胞对不同刺激时长的循环压缩和拉伸应力的反应。

材料与方法

将 RSC96 细胞进行循环拉伸或压缩应变处理;对于任一种应变,将细胞分为五组,分别处理 0、1、2、24 和 48 h。采用酶联免疫吸附试验检测培养基中神经生长因子(NGF)、脑源性神经营养因子(BDNF)、神经营养因子-3 和神经营养因子-4 的分泌情况。采用实时 PCR 技术定量检测神经生长因子(NGF、BDNF、神经营养因子-3 和神经营养因子-4)和髓鞘相关基因(Sox10、Krox20、神经调节蛋白 1、NCAM、N-钙黏蛋白、P0、MAG 和 MBP)的 mRNA 表达。采用免疫荧光染色技术观察拉伸组中 Krox20 和 F-肌动蛋白的表达情况。

结果

在 24 h 内,经循环拉伸处理的细胞表达和分泌的 BDNF 明显增多,而循环压缩则下调了 BDNF 的表达。经拉伸和压缩处理的细胞在所有时间点均下调了 NRG1、NCAM、Krox20 和 Sox10 的表达。N-钙黏蛋白的表达不受拉伸或压缩的影响。F-肌动蛋白受拉伸应力下调。

结论

拉伸和压缩负荷均下调了几个重要的髓鞘相关雪旺细胞基因的表达,从而促进脱髓鞘。同时,拉伸应力在 24 h 内促进了雪旺细胞 BDNF 的分泌,这可能有助于受损轴突的维持和修复。这些机械应力的影响可能是通过肌动蛋白细胞骨架介导的。

相似文献

1
Cyclic mechanical stress modulates neurotrophic and myelinating gene expression of Schwann cells.
Cell Prolif. 2015 Feb;48(1):59-66. doi: 10.1111/cpr.12151. Epub 2014 Nov 24.
3
Activation of Krox20 gene expression by Sox10 in myelinating Schwann cells.
J Neurochem. 2010 Feb;112(3):744-54. doi: 10.1111/j.1471-4159.2009.06498.x. Epub 2009 Nov 17.
6
The roles of cell adhesion molecules on the formation of peripheral myelin.
Keio J Med. 2001 Dec;50(4):240-8. doi: 10.2302/kjm.50.240.

引用本文的文献

1
Development of a 3-dimensional organotypic model with characteristics of peripheral sensory nerves.
Cell Rep Methods. 2024 Aug 19;4(8):100835. doi: 10.1016/j.crmeth.2024.100835. Epub 2024 Aug 7.
2
Strain-induced bands of Büngner formation promotes axon growth in 3D tissue-engineered constructs.
J Tissue Eng. 2024 Jan 18;15:20417314231220396. doi: 10.1177/20417314231220396. eCollection 2024 Jan-Dec.
4
The interplay of common genetic variants NRG1 rs2439302 and RET rs2435357 increases the risk of developing Hirschsprung's disease.
Front Cell Dev Biol. 2023 Jul 7;11:1184799. doi: 10.3389/fcell.2023.1184799. eCollection 2023.
5
Design of Novel Mechanically Resistant and Biodegradable Multichannel Platforms for the Treatment of Peripheral Nerve Injuries.
Biomacromolecules. 2023 Apr 10;24(4):1731-1743. doi: 10.1021/acs.biomac.2c01498. Epub 2023 Mar 15.
6
The role of mechanobiology on the Schwann cell response: A tissue engineering perspective.
Front Cell Neurosci. 2022 Aug 10;16:948454. doi: 10.3389/fncel.2022.948454. eCollection 2022.
7
Cell Shape and Matrix Stiffness Impact Schwann Cell Plasticity via YAP/TAZ and Rho GTPases.
Int J Mol Sci. 2021 May 1;22(9):4821. doi: 10.3390/ijms22094821.
9
Effects of Cyclic Tensile Strain on Oxidative Stress and the Function of Schwann Cells.
Biomed Res Int. 2018 Jun 10;2018:5746525. doi: 10.1155/2018/5746525. eCollection 2018.
10
Fak-Mapk, Hippo and Wnt signalling pathway expression and regulation in distraction osteogenesis.
Cell Prolif. 2018 Aug;51(4):e12453. doi: 10.1111/cpr.12453. Epub 2018 Mar 5.

本文引用的文献

1
Comparison of Effects of Mechanical Stretching on Osteogenic Potential of ASCs and BMSCs.
Bone Res. 2013 Sep 25;1(3):282-90. doi: 10.4248/BR201303006. eCollection 2013 Sep.
2
Mechanotransduction down to individual actin filaments.
Eur J Cell Biol. 2013 Oct-Nov;92(10-11):333-8. doi: 10.1016/j.ejcb.2013.10.011. Epub 2013 Nov 4.
3
Tension-induced neurite growth in microfluidic channels.
Lab Chip. 2013 Sep 21;13(18):3735-40. doi: 10.1039/c3lc50681a.
4
Mechanosensitive systems at the cadherin-F-actin interface.
J Cell Sci. 2013 Jan 15;126(Pt 2):403-13. doi: 10.1242/jcs.109447. Epub 2013 Mar 22.
6
A role for Schwann cell-derived neuregulin-1 in remyelination.
Nat Neurosci. 2013 Jan;16(1):48-54. doi: 10.1038/nn.3281. Epub 2012 Dec 9.
7
Mechanical load modulates the stimulatory effect of BMP2 in a rat nonunion model.
Tissue Eng Part A. 2013 Jan;19(1-2):247-54. doi: 10.1089/ten.TEA.2012.0265. Epub 2012 Oct 4.
8
Genome-wide analysis of EGR2/SOX10 binding in myelinating peripheral nerve.
Nucleic Acids Res. 2012 Aug;40(14):6449-60. doi: 10.1093/nar/gks313. Epub 2012 Apr 9.
10
Mechanical stretch inhibits adipogenesis and stimulates osteogenesis of adipose stem cells.
Cell Prolif. 2012 Apr;45(2):158-66. doi: 10.1111/j.1365-2184.2011.00802.x. Epub 2012 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验