Departement Physik, Universität Basel, CH-4056 Basel, Switzerland.
Nat Nanotechnol. 2015 Jan;10(1):55-9. doi: 10.1038/nnano.2014.278. Epub 2014 Nov 24.
Sympathetic cooling with ultracold atoms and atomic ions enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to 90 times larger than that of the coolant atom. Here, we use ultracold atoms to sympathetically cool the vibrations of a Si3N4 nanomembrane, the mass of which exceeds that of the atomic ensemble by a factor of 10(10). The coupling of atomic and membrane vibrations is mediated by laser light over a macroscopic distance and is enhanced by placing the membrane in an optical cavity. We observe cooling of the membrane vibrations from room temperature to 650 ± 230 mK, exploiting the large atom-membrane cooperativity of our hybrid optomechanical system. With technical improvements, our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as nanomembranes or levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state.
用超冷原子和离子进行的交感冷却使在直接激光或蒸发冷却不可能的系统中能够达到超低温。到目前为止,它仅限于对其他微观粒子的冷却,其质量比冷却剂原子大 90 倍以上。在这里,我们使用超冷原子来对 Si3N4 纳米膜的振动进行交感冷却,其质量超过原子集合体的 1010 倍。原子和膜振动的耦合是通过宏观距离的激光介导的,并通过将膜放置在光学腔中来增强。我们观察到膜振动从室温冷却到 650±230mK,利用我们的混合光机械系统的大原子-膜协同作用。通过技术改进,我们的方案可以在纯粹的光机械技术无法达到基态的情况下,为纳米膜或悬浮纳米粒子等低频振荡器提供基态冷却和量子控制。