Suppr超能文献

哺乳动物肾小球的比较磷酸化蛋白质组学分析揭示了保守的足突蛋白C末端磷酸化作为裂孔隔膜复合体结构的决定因素。

Comparative phosphoproteomic analysis of mammalian glomeruli reveals conserved podocin C-terminal phosphorylation as a determinant of slit diaphragm complex architecture.

作者信息

Rinschen Markus M, Pahmeyer Caroline, Pisitkun Trairak, Schnell Nicole, Wu Xiongwu, Maaß Martina, Bartram Malte P, Lamkemeyer Tobias, Schermer Bernhard, Benzing Thomas, Brinkkoetter Paul T

机构信息

Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.

出版信息

Proteomics. 2015 Apr;15(7):1326-31. doi: 10.1002/pmic.201400235. Epub 2015 Jan 19.

Abstract

Glomerular biology is dependent on tightly controlled signal transduction networks that control phosphorylation of signaling proteins such as cytoskeletal regulators or slit diaphragm proteins of kidney podocytes. Cross-species comparison of phosphorylation events is a powerful mean to functionally prioritize and identify physiologically meaningful phosphorylation sites. Here, we present the result of phosphoproteomic analyses of cow and rat glomeruli to allow cross-species comparisons. We discovered several phosphorylation sites with potentially high biological relevance, e.g. tyrosine phosphorylation of the cytoskeletal regulator synaptopodin and the slit diaphragm protein neph-1 (Kirrel). Moreover, cross-species comparisons revealed conserved phosphorylation of the slit diaphragm protein nephrin on an acidic cluster at the intracellular terminus and conserved podocin phosphorylation on the very carboxyl terminus of the protein. We studied a highly conserved podocin phosphorylation site in greater detail and show that phosphorylation regulates affinity of the interaction with nephrin and CD2AP. Taken together, these results suggest that species comparisons of phosphoproteomic data may reveal regulatory principles in glomerular biology. All MS data have been deposited in the ProteomeXchange with identifier PXD001005 (http://proteomecentral.proteomexchange.org/dataset/PXD001005).

摘要

肾小球生物学依赖于严格控制的信号转导网络,这些网络控制着信号蛋白的磷酸化,如细胞骨架调节因子或肾足细胞的裂孔隔膜蛋白。磷酸化事件的跨物种比较是在功能上对生理上有意义的磷酸化位点进行优先级排序和识别的有力手段。在此,我们展示了牛和大鼠肾小球磷酸化蛋白质组分析的结果,以进行跨物种比较。我们发现了几个可能具有高度生物学相关性的磷酸化位点,例如细胞骨架调节因子突触素和裂孔隔膜蛋白neph-1(Kirrel)的酪氨酸磷酸化。此外,跨物种比较揭示了裂孔隔膜蛋白nephrin在细胞内末端酸性簇上的保守磷酸化以及该蛋白羧基末端非常保守的足突蛋白磷酸化。我们更详细地研究了一个高度保守的足突蛋白磷酸化位点,并表明磷酸化调节了与nephrin和CD2AP相互作用的亲和力。综上所述,这些结果表明磷酸化蛋白质组数据的物种比较可能揭示肾小球生物学中的调节原则。所有质谱数据已存入蛋白质组交换库,标识符为PXD001005(http://proteomecentral.proteomexchange.org/dataset/PXD001005)。

相似文献

2
beta-Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity.
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14110-5. doi: 10.1073/pnas.0602587103. Epub 2006 Sep 12.
5
Cloning of rat homologue of podocin: expression in proteinuric states and in developing glomeruli.
J Am Soc Nephrol. 2003 Jan;14(1):46-56. doi: 10.1097/01.asn.0000037401.02391.76.
6
CIN85/RukL is a novel binding partner of nephrin and podocin and mediates slit diaphragm turnover in podocytes.
J Biol Chem. 2010 Aug 13;285(33):25285-95. doi: 10.1074/jbc.M109.087239. Epub 2010 May 10.
7
SRC-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin.
J Am Soc Nephrol. 2004 Dec;15(12):3006-15. doi: 10.1097/01.ASN.0000146689.88078.80.
8
Nephrin and Podocin functions are highly conserved between the zebrafish pronephros and mammalian metanephros.
Mol Med Rep. 2014 Feb;9(2):457-65. doi: 10.3892/mmr.2013.1844. Epub 2013 Dec 6.
9
Tyrosine Phosphorylation of CD2AP Affects Stability of the Slit Diaphragm Complex.
J Am Soc Nephrol. 2019 Jul;30(7):1220-1237. doi: 10.1681/ASN.2018080860. Epub 2019 Jun 24.
10
Unraveling the molecular make-up of the glomerular podocyte slit diaphragm.
Exp Nephrol. 2001;9(6):355-9. doi: 10.1159/000052632.

引用本文的文献

1
Applying a Conservation-Based Approach for Predicting Novel Phosphorylation Sites in Eukaryotes and Evaluating Their Functional Relevance.
J Proteome Res. 2025 Sep 5;24(9):4547-4562. doi: 10.1021/acs.jproteome.5c00278. Epub 2025 Jul 29.
2
A slit-diaphragm-associated protein network for dynamic control of renal filtration.
Nat Commun. 2022 Oct 28;13(1):6446. doi: 10.1038/s41467-022-33748-1.
3
Tripartite Separation of Glomerular Cell Types and Proteomes from Reporter-Free Mice.
J Am Soc Nephrol. 2021 Sep;32(9):2175-2193. doi: 10.1681/ASN.2020091346. Epub 2021 Jun 1.
4
The tissue proteome in the multi-omic landscape of kidney disease.
Nat Rev Nephrol. 2021 Mar;17(3):205-219. doi: 10.1038/s41581-020-00348-5. Epub 2020 Oct 7.
5
Phosphorylation of key podocyte proteins and the association with proteinuric kidney disease.
Am J Physiol Renal Physiol. 2020 Aug 1;319(2):F284-F291. doi: 10.1152/ajprenal.00002.2020. Epub 2020 Jul 20.
6
MOLECULAR DESIGN OF THE KIDNEY FILTRATION BARRIER.
Trans Am Clin Climatol Assoc. 2020;131:125-139.
7
Global phosphotyrosinylated protein profile of cell-matrix adhesion complexes of trabecular meshwork cells.
Am J Physiol Cell Physiol. 2020 Aug 1;319(2):C288-C299. doi: 10.1152/ajpcell.00537.2019. Epub 2020 May 20.
8
Metabolic rewiring of the hypertensive kidney.
Sci Signal. 2019 Dec 10;12(611):eaax9760. doi: 10.1126/scisignal.aax9760.
9
From Molecules to Mechanisms: Functional Proteomics and Its Application to Renal Tubule Physiology.
Physiol Rev. 2018 Oct 1;98(4):2571-2606. doi: 10.1152/physrev.00057.2017.
10

本文引用的文献

1
2
Label-free quantitative proteomic analysis of the YAP/TAZ interactome.
Am J Physiol Cell Physiol. 2014 May 1;306(9):C805-18. doi: 10.1152/ajpcell.00339.2013. Epub 2014 Feb 26.
3
Phosphoproteomic analysis reveals regulatory mechanisms at the kidney filtration barrier.
J Am Soc Nephrol. 2014 Jul;25(7):1509-22. doi: 10.1681/ASN.2013070760. Epub 2014 Feb 7.
5
Characterization of a short isoform of the kidney protein podocin in human kidney.
BMC Nephrol. 2013 May 6;14:102. doi: 10.1186/1471-2369-14-102.
6
CPhos: a program to calculate and visualize evolutionarily conserved functional phosphorylation sites.
Proteomics. 2012 Nov;12(22):3299-303. doi: 10.1002/pmic.201200189. Epub 2012 Oct 29.
7
Systematic functional prioritization of protein posttranslational modifications.
Cell. 2012 Jul 20;150(2):413-25. doi: 10.1016/j.cell.2012.05.036.
9
Dynamics of the G protein-coupled vasopressin V2 receptor signaling network revealed by quantitative phosphoproteomics.
Mol Cell Proteomics. 2012 Feb;11(2):M111.014613. doi: 10.1074/mcp.M111.014613. Epub 2011 Nov 21.
10
Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule.
Am J Physiol Cell Physiol. 2011 Apr;300(4):C755-70. doi: 10.1152/ajpcell.00360.2010. Epub 2011 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验