Suppr超能文献

甲羟戊酸-3-激酶的结构分析有助于深入了解类异戊二烯途径脱羧酶的作用机制。

Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases.

作者信息

Vinokur Jeffrey M, Korman Tyler P, Sawaya Michael R, Collazo Michael, Cascio Duillio, Bowie James U

机构信息

Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California, 90095-1570.

出版信息

Protein Sci. 2015 Feb;24(2):212-20. doi: 10.1002/pro.2607. Epub 2014 Dec 26.

Abstract

In animals, cholesterol is made from 5-carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)-mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate-3-kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)-mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation.

摘要

在动物体内,胆固醇由甲羟戊酸途径产生的5碳构件合成。抑制甲羟戊酸途径的药物,如阿托伐他汀(立普妥),已成功用于治疗人类高胆固醇血症。抑制胆固醇合成的另一个潜在靶点是甲羟戊酸二磷酸脱羧酶(MDD),它催化(R)-甲羟戊酸二磷酸的磷酸化,随后脱羧生成异戊烯基焦磷酸。我们最近发现了一种来自嗜酸嗜热栖热菌的MDD同源物,甲羟戊酸-3-激酶(M3K),它催化(R)-甲羟戊酸的相同磷酸化反应,但不伴随脱羧反应。因此,M3K催化脱羧酶反应的一半,使我们能够将脱羧所需活性位点的特征与磷酸化所需的特征区分开来。在这里,我们确定了无配体形式以及结合底物形式的M3K的晶体结构,并将其与MDD结构进行比较。结构和诱变分析揭示了使M3K结合甲羟戊酸而非甲羟戊酸二磷酸的修饰。与同源MDD结构的比较表明,两种酶都利用类似的精氨酸或赖氨酸残基催化磷酸转移。然而,M3K中缺少MDD中一个以前认为在磷酸化中起作用的不变活性位点天冬氨酸/赖氨酸对,且没有功能替代物。因此,我们认为MDD中不变的天冬氨酸/赖氨酸对可能对脱羧至关重要,而不是对磷酸化。

相似文献

引用本文的文献

本文引用的文献

1
Evidence of a novel mevalonate pathway in archaea.古菌中新型甲羟戊酸途径的证据。
Biochemistry. 2014 Jul 1;53(25):4161-8. doi: 10.1021/bi500566q. Epub 2014 Jun 18.
6
Towards automated crystallographic structure refinement with phenix.refine.利用phenix.refine实现自动化晶体学结构精修
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67. doi: 10.1107/S0907444912001308. Epub 2012 Mar 16.
7
Isoprenoid biosynthesis in bacterial pathogens.细菌病原体中的异戊烯基生物合成。
Microbiology (Reading). 2012 Jun;158(Pt 6):1389-1401. doi: 10.1099/mic.0.051599-0. Epub 2012 Mar 30.
10
Features and development of Coot.Coot的特点与发展
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验