Vinokur Jeffrey M, Korman Tyler P, Sawaya Michael R, Collazo Michael, Cascio Duillio, Bowie James U
Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California, 90095-1570.
Protein Sci. 2015 Feb;24(2):212-20. doi: 10.1002/pro.2607. Epub 2014 Dec 26.
In animals, cholesterol is made from 5-carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)-mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate-3-kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)-mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation.
在动物体内,胆固醇由甲羟戊酸途径产生的5碳构件合成。抑制甲羟戊酸途径的药物,如阿托伐他汀(立普妥),已成功用于治疗人类高胆固醇血症。抑制胆固醇合成的另一个潜在靶点是甲羟戊酸二磷酸脱羧酶(MDD),它催化(R)-甲羟戊酸二磷酸的磷酸化,随后脱羧生成异戊烯基焦磷酸。我们最近发现了一种来自嗜酸嗜热栖热菌的MDD同源物,甲羟戊酸-3-激酶(M3K),它催化(R)-甲羟戊酸的相同磷酸化反应,但不伴随脱羧反应。因此,M3K催化脱羧酶反应的一半,使我们能够将脱羧所需活性位点的特征与磷酸化所需的特征区分开来。在这里,我们确定了无配体形式以及结合底物形式的M3K的晶体结构,并将其与MDD结构进行比较。结构和诱变分析揭示了使M3K结合甲羟戊酸而非甲羟戊酸二磷酸的修饰。与同源MDD结构的比较表明,两种酶都利用类似的精氨酸或赖氨酸残基催化磷酸转移。然而,M3K中缺少MDD中一个以前认为在磷酸化中起作用的不变活性位点天冬氨酸/赖氨酸对,且没有功能替代物。因此,我们认为MDD中不变的天冬氨酸/赖氨酸对可能对脱羧至关重要,而不是对磷酸化。