Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA.
J Biol Chem. 2011 Jul 8;286(27):23900-10. doi: 10.1074/jbc.M111.242016. Epub 2011 May 11.
The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in K(i) values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser(192) as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases k(cat) by ∼10(3)-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.
多异戊烯醇磷酸酯是革兰氏阳性菌(包括致病性肠球菌、链球菌和葡萄球菌属)细胞壁肽聚糖生物合成所必需的。在这些生物体中,甲羟戊酸途径用于产生前体异戊烯基 5-二磷酸。甲羟戊酸二磷酸脱羧酶(MDD)在 ATP 依赖性不可逆反应中催化异戊烯基 5-二磷酸的形成,因此是抑制剂开发的有吸引力的靶标,可能导致新的抗菌剂。为了促进对此可能性的探索,我们报告了表皮葡萄球菌 MDD 的晶体结构(1.85 Å 分辨率),并且据我们所知,这是配体结合 MDD 的第一个结构。这些结构包括与甲羟戊酸 5-二磷酸类似物二膦基甘氨酸(2.05 Å 分辨率)和 6-氟甲羟戊酸二磷酸(FMVAPP;2.2 Å 分辨率)结合的 MDD。这些结构的比较为观察到的这些抑制剂的 K(i) 值的显著差异提供了物理基础。对酶/抑制剂结构的检查确定不变的 Ser(192)侧链作为对催化的潜在贡献。值得注意的是,即使 FMVAPP 与该突变体的结合相互作用与野生型 MDD 观察到的相似,通过与 FMVAPP 的 S192A 的 2.1 Å 共晶结构判断,Ser → Ala 取代该侧链使 k(cat)降低了约 10(3)倍。微生物 MDD 结构与哺乳动物对应物的比较揭示了活性部位周围的潜在靶标,这些靶标可能被利用来选择性地靶向微生物酶。这些研究为 MDD 机制的先前观察结果提供了结构基础,并为朝着合理抑制剂设计的未来工作提供了信息。