Aguda Adeleke H, Panwar Preety, Du Xin, Nguyen Nham T, Brayer Gary D, Brömme Dieter
Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, and.
Department of Biochemistry and Molecular Biology, Faculty of Medicine, and.
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17474-9. doi: 10.1073/pnas.1414126111. Epub 2014 Nov 24.
Cathepsin K is the major collagenolytic protease in bone that facilitates physiological as well as pathological bone degradation. Despite its key role in bone remodeling and for being a highly sought-after drug target for the treatment of osteoporosis, the mechanism of collagen fiber degradation by cathepsin K remained elusive. Here, we report the structure of a collagenolytically active cathepsin K protein dimer. Cathepsin K is organized into elongated C-shaped protease dimers that reveal a putative collagen-binding interface aided by glycosaminoglycans. Molecular modeling of collagen binding to the dimer indicates the participation of nonactive site amino acid residues, Q21 and Q92, in collagen unfolding. Mutations at these sites as well as perturbation of the dimer protein-protein interface completely inhibit cathepsin-K-mediated fiber degradation without affecting the hydrolysis of gelatin or synthetic peptide. Using scanning electron microscopy, we demonstrate the specific binding of cathepsin K at the edge of the fibrillar gap region of collagen fibers, which suggest initial cleavage events at the N- and C-terminal ends of tropocollagen molecules. Edman degradation analysis of collagen fiber degradation products revealed those initial cleavage sites. We propose that one cathepsin K molecule binds to collagen-bound glycosaminoglycans at the gap region and recruits a second protease molecule that provides an unfolding and cleavage mechanism for triple helical collagen. Removal of collagen-associated glycosaminoglycans prevents cathepsin K binding and subsequently fiber hydrolysis. Cathepsin K dimer and glycosaminoglycan binding sites represent novel targeting sites for the development of nonactive site-directed second-generation inhibitors of this important drug target.
组织蛋白酶K是骨骼中主要的胶原分解蛋白酶,可促进生理性和病理性的骨降解。尽管其在骨重塑中起关键作用,且是治疗骨质疏松症备受追捧的药物靶点,但组织蛋白酶K降解胶原纤维的机制仍不清楚。在此,我们报道了具有胶原分解活性的组织蛋白酶K蛋白二聚体的结构。组织蛋白酶K组装成细长的C形蛋白酶二聚体,其揭示了一个由糖胺聚糖辅助的假定胶原结合界面。胶原与二聚体结合的分子模型表明,非活性位点氨基酸残基Q21和Q92参与了胶原的解折叠。这些位点的突变以及二聚体蛋白-蛋白界面的扰动完全抑制了组织蛋白酶K介导的纤维降解,而不影响明胶或合成肽的水解。使用扫描电子显微镜,我们证明了组织蛋白酶K在胶原纤维原纤维间隙区域边缘的特异性结合,这表明原胶原分子的N端和C端发生了初始切割事件。对胶原纤维降解产物的埃德曼降解分析揭示了那些初始切割位点。我们提出,一个组织蛋白酶K分子在间隙区域与胶原结合的糖胺聚糖结合,并招募第二个蛋白酶分子,该分子为三螺旋胶原提供解折叠和切割机制。去除与胶原相关的糖胺聚糖可防止组织蛋白酶K结合,进而防止纤维水解。组织蛋白酶K二聚体和糖胺聚糖结合位点代表了开发针对这一重要药物靶点的非活性位点导向第二代抑制剂的新靶点。