Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.
Nano Lett. 2015 Jan 14;15(1):629-34. doi: 10.1021/nl504119j. Epub 2014 Dec 5.
Diffusion of adsorbates on transition metal nanoparticles is a precursor process for heterogeneously catalyzed reactions, and as a result, an atomistic understanding of the diffusion mechanism is very important. We systematically studied adsorption and diffusion of atomic and diatomic species (H, C, N, O, CO, and NO) on nanometer-sized Pt and Cu nanoparticles with different sizes and shapes using density functional theory calculations. We show that nanoparticles bind adsorbates more strongly than the corresponding extended single crystal metal surfaces. We find that there is a Brønsted-Evans-Polanyi-type linear correlation between the transition state energy and the initial state energy for adsorbate diffusion across the edges of Pt and Cu nanoparticles. We further show that the barrier for adsorbate diffusion across the nanoparticles edges can be estimated by the binding energy of the adsorbate on the nanoparticles. These results provide useful insights for understanding diffusion-mediated chemical reactions catalyzed by transition metal nanoparticles, which are widely used in heterogeneous catalysis.
吸附质在过渡金属纳米粒子上的扩散是多相催化反应的前体过程,因此,对扩散机制的原子水平理解非常重要。我们使用密度泛函理论计算系统地研究了原子和双原子物种(H、C、N、O、CO 和 NO)在不同尺寸和形状的纳米级 Pt 和 Cu 纳米粒子上的吸附和扩散。我们表明,纳米粒子比相应的扩展单晶金属表面更强烈地结合吸附物。我们发现,对于 Pt 和 Cu 纳米粒子边缘的吸附物扩散,过渡态能量与初始状态能量之间存在 Brønsted-Evans-Polanyi 型线性关系。我们进一步表明,可以通过吸附物在纳米粒子上的结合能来估计吸附物穿过纳米粒子边缘的扩散势垒。这些结果为理解广泛应用于多相催化的过渡金属纳米粒子催化的扩散介导化学反应提供了有用的见解。