Institute of Advanced Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China.
Nanoscale. 2017 Aug 17;9(32):11584-11589. doi: 10.1039/c7nr02743e.
By using density-functional theory (DFT) calculations, the dissociation of CH on various metal surfaces, including Ni, Cu, Ru, Pd, Pt, Ir, Co, Au, and Rh, is systematically explored. For all the explored face-centered cubic (fcc) metal substrates, the (100) surface is found to be more active than the (111) surface, which explains the higher activity of the (100) surface in graphene chemical vapor deposition (CVD) growth. The catalytic activity order of these metals is found to be Ni ≈ Rh ≈ Co ≈ Ru > Pd ≈ Pt ≈ Ir > Cu > Au, which explained the catalyst type dependent growth behavior of graphene. It was found that the main dissociation product of CH on Ni, Pd, Pt, Ir, Rh, Co, and Ru substrates is a carbon monomer and a very high rate of dissociation is expected, but a low rate of dissociation and the dissociation products of CH (i = 1, 2, 3) are expected on Cu and Au surfaces, which explained the diffusion-limited growth of graphene on Cu and Au surfaces and attachment limited growth on other active metal surfaces. Furthermore, our study shows that the dissociation of CH on all these metal substrates follows the well-known Brønsted-Evans-Polanyi (BEP) principles, or the reaction barrier is roughly linear to the reaction energy.
利用密度泛函理论(DFT)计算,系统地研究了 CH 在各种金属表面(包括 Ni、Cu、Ru、Pd、Pt、Ir、Co、Au 和 Rh)上的解离。对于所有探索的面心立方(fcc)金属衬底,(100)表面比(111)表面更活跃,这解释了在石墨烯化学气相沉积(CVD)生长中(100)表面更高的活性。这些金属的催化活性顺序为 Ni ≈ Rh ≈ Co ≈ Ru > Pd ≈ Pt ≈ Ir > Cu > Au,这解释了石墨烯生长的催化剂类型依赖性。研究发现,CH 在 Ni、Pd、Pt、Ir、Rh、Co 和 Ru 衬底上的主要解离产物是一个碳原子单体,预计解离速率很高,但在 Cu 和 Au 表面上预计解离速率较低,并且 CH 的解离产物(i = 1、2、3),这解释了在 Cu 和 Au 表面上石墨烯的扩散限制生长和在其他活性金属表面上的附着限制生长。此外,我们的研究表明,CH 在所有这些金属衬底上的解离都遵循着著名的 Brønsted-Evans-Polanyi(BEP)原理,或者反应势垒大致与反应能呈线性关系。