IEEE Trans Cybern. 2015 Sep;45(9):1953-66. doi: 10.1109/TCYB.2014.2362771. Epub 2014 Nov 21.
When facing multitask-learning problems, it is desirable that the learning method could find the correct input-output features and share the commonality among multiple domains and also scale-up for large multitask datasets. We introduce the multitask coupled logistic regression (LR) framework called LR-based multitask classification learning algorithm (MTC-LR), which is a new method for generating each classifier for each task, capable of sharing the commonality among multitask domains. The basic idea of MTC-LR is to use all individual LR based classifiers, each one appropriate for each task domain, but in contrast to other support vector machine (SVM)-based proposals, learning all the parameter vectors of all individual classifiers by using the conjugate gradient method, in a global way and without the use of kernel trick, and being easily extended into its scaled version. We theoretically show that the addition of a new term in the cost function of the set of LRs (that penalizes the diversity among multiple tasks) produces a coupling of multiple tasks that allows MTC-LR to improve the learning performance in a LR way. This finding can make us easily integrate it with a state-of-the-art fast LR algorithm called dual coordinate descent method (CDdual) to develop its fast version MTC-LR-CDdual for large multitask datasets. The proposed algorithm MTC-LR-CDdual is also theoretically analyzed. Our experimental results on artificial and real-datasets indicate the effectiveness of the proposed algorithm MTC-LR-CDdual in classification accuracy, speed, and robustness.
当面临多任务学习问题时,理想的学习方法能够找到正确的输入-输出特征,并共享多个领域的共性,同时也能够扩展到大的多任务数据集。我们引入了一种称为基于逻辑回归(LR)的多任务分类学习算法(MTC-LR)的多任务耦合逻辑回归(LR)框架,这是一种为每个任务生成每个分类器的新方法,能够共享多任务领域的共性。MTC-LR 的基本思想是使用所有个体 LR 分类器,每个分类器都适合于每个任务领域,但与其他基于支持向量机(SVM)的方法不同,通过使用共轭梯度法,以全局方式学习所有个体分类器的所有参数向量,而无需使用核技巧,并且可以轻松扩展到其扩展版本。我们从理论上证明,在 LR 集合的成本函数中添加一个新项(惩罚多个任务之间的多样性)可以产生多个任务的耦合,这使得 MTC-LR 能够以 LR 的方式提高学习性能。这一发现使我们能够很容易地将其与一种称为对偶坐标下降法(CDdual)的最先进的快速 LR 算法集成,以开发用于大的多任务数据集的快速版本 MTC-LR-CDdual。还对所提出的算法 MTC-LR-CDdual 进行了理论分析。在人工和真实数据集上的实验结果表明,所提出的算法 MTC-LR-CDdual 在分类准确性、速度和鲁棒性方面的有效性。