Suppr超能文献

微流控芯片上单细胞中快速蛋白质磷酸化动力学分析

Analysis of fast protein phosphorylation kinetics in single cells on a microfluidic chip.

作者信息

Blazek Matthias, Santisteban Tomas Silva, Zengerle Roland, Meier Matthias

机构信息

Microfluidic and Biological Engineering, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.

出版信息

Lab Chip. 2015 Feb 7;15(3):726-34. doi: 10.1039/c4lc00797b.

Abstract

In the present study, we developed a microfluidic large-scale integration (mLSI) platform for the temporal and chemical control of cell cultures to study fast kinetics of protein phosphorylation. For in situ protein analysis the mLSI chip integrates the Proximity Ligation Assay (PLA). To investigate cell-signaling events with a time resolution of a few seconds we first engineered and optimized the fluidic layout of the chip with 128 individual addressable cell culture chambers. The functionality of the cell culture operations and PLA is demonstrated by the determination of the minimum cell sample size for obtaining robust quantitative PLA signals at the single-cell level. We show that at least 350 cells per assay condition are required to statistically evaluate single cell PLA data. In the following we used the PLA chip with over 500 hundred cells per condition to record sequential phosphorylation reactions of the canonical protein kinase within the Akt pathway, which is activated in various human cancer types. This was achieved by stimulating mouse fibroblast cell cultures with either the platelet-derived growth factor (PDGF) or insulin-like growth factor (IGF-1). Fluidic cell stimulation pulses of 5 seconds were followed by precisely time shifted cell fixation pulses to obtain a temporal resolution of 10 seconds. PLA was then performed on all fixed arrays of cell cultures to extract the characteristic phosphorylation times at the single cell level for either the PDGF, or IGF-1 receptor and the Akt and GSK3β kinases. Characteristic phosphorylation times for the receptors were between 13 and 35 seconds, whereas for downstream kinases between 25 and 200 seconds. Thus we could reveal a molecular order of the phosphorylation reactions during the signal transduction through the Akt pathway. In dependence of the stimulus we found a temporal difference for the characteristic phosphorylation time of 20 and 150 seconds for the Ser-473 and Thr-308 residues on the Akt kinase, respectively. Temporal alteration of sequential phosphorylation reactions on Akt has been proposed as molecular mechanism to differentiate between stimuli and biophysically determined in the present study.

摘要

在本研究中,我们开发了一种微流控大规模集成(mLSI)平台,用于对细胞培养进行时间和化学控制,以研究蛋白质磷酸化的快速动力学。为了进行原位蛋白质分析,mLSI芯片集成了邻近连接分析(PLA)。为了以几秒的时间分辨率研究细胞信号事件,我们首先设计并优化了具有128个独立可寻址细胞培养室的芯片的流体布局。通过确定在单细胞水平获得可靠定量PLA信号所需的最小细胞样本量,证明了细胞培养操作和PLA的功能。我们表明,每种检测条件至少需要350个细胞才能对单细胞PLA数据进行统计学评估。接下来,我们使用每种条件下有500多个细胞的PLA芯片来记录Akt途径中经典蛋白激酶的顺序磷酸化反应,该途径在多种人类癌症类型中被激活。这是通过用血小板衍生生长因子(PDGF)或胰岛素样生长因子(IGF-1)刺激小鼠成纤维细胞培养物来实现的。5秒的流体细胞刺激脉冲之后是精确时间偏移的细胞固定脉冲,以获得10秒的时间分辨率。然后对所有固定的细胞培养阵列进行PLA,以提取单细胞水平上PDGF或IGF-1受体以及Akt和GSK3β激酶的特征磷酸化时间。受体的特征磷酸化时间在13至35秒之间,而下游激酶的特征磷酸化时间在25至200秒之间。因此,我们可以揭示通过Akt途径进行信号转导期间磷酸化反应的分子顺序。根据刺激情况,我们发现Akt激酶上Ser-473和Thr-308残基的特征磷酸化时间分别存在20和150秒的时间差异。Akt上顺序磷酸化反应的时间改变已被提出作为区分刺激的分子机制,并在本研究中通过生物物理学方法确定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验