Suppr超能文献

激酶信号级联反应:最新的机制全景

Kinase signaling cascades: an updated mechanistic landscape.

作者信息

Nussinov Ruth, Regev Clil, Jang Hyunbum

机构信息

Computational Structural Biology Section, Frederick National Laboratory for Cancer Research MD 21702 USA

Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel.

出版信息

Chem Sci. 2025 Aug 19. doi: 10.1039/d5sc04657b.

Abstract

Here, we shed physico-chemical light on major kinase signal transduction cascades in cell proliferation in the Ras network, MAPK and PI3K/AKT/mTOR. The cascades respond to external stimuli. The kinases are allosterically activated and relay the signal, leading to cell growth and division. The pathways are crosslinked, with the output of one pathway influencing the other. The effectiveness of their allosteric signaling relay stems from coordinated speed and precision. . Here, we define their nature by their kinases' repertoires, substrate specificities and breadth, activation and autoinhibition mechanisms, catalytic rates, interactions, and their dilution state. The cascades are lodged in a dense molecular condensate phase at the membrane adjoining RTK clusters, where their assemblies promote specific, productive signaling. Aiming to shed further physico-chemical light, we ask (i) how starting the cascades with a single substrate and ending with hundreds is still labeled specific; (ii) what we can learn from their different number of mutations; and (iii) why B-Raf unique side-to-side inverse dimerization slows ERK activation and signaling. We point to the (iv) chemical mechanics of the distributions of rates of the crucial MAPK cascade: slower at the top and rapid at the bottom. Finally, the cascades provide inspiration for pharmacological perspectives. Collectively, our updated physico-chemical outlook provides the molecular basis of targeting protein kinases in cancer and spans mechanisms and scales, from conformational landscapes to membraneless organelles, cells and systems levels.

摘要

在此,我们从物理化学角度揭示了Ras网络、MAPK和PI3K/AKT/mTOR中细胞增殖过程中的主要激酶信号转导级联反应。这些级联反应对外部刺激做出响应。激酶通过变构激活并传递信号,从而导致细胞生长和分裂。这些信号通路相互交联,一条通路的输出会影响另一条通路。它们变构信号传递的有效性源于速度和精度的协调。在此,我们通过激酶的组成、底物特异性和广度、激活和自抑制机制、催化速率、相互作用及其稀释状态来定义它们的性质。这些级联反应存在于与受体酪氨酸激酶(RTK)簇相邻的膜上的致密分子凝聚相中,在那里它们的组装促进了特定的、有效的信号传导。为了进一步从物理化学角度进行阐释,我们提出以下问题:(i)从单个底物开始并以数百个底物结束的级联反应如何仍然具有特异性标记;(ii)我们能从它们不同数量的突变中学到什么;(iii)为什么B-Raf独特的侧向反向二聚化会减缓ERK的激活和信号传导。我们指出(iv)关键MAPK级联反应速率分布的化学机制:顶部较慢而底部较快。最后,这些级联反应为药理学研究提供了思路。总的来说,我们更新后的物理化学观点为癌症中靶向蛋白激酶提供了分子基础,并涵盖了从构象景观到无膜细胞器、细胞和系统水平的机制和尺度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4e/12378555/3cc13df783d6/d5sc04657b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验