Cubillos Francisco A, Stegle Oliver, Grondin Cécile, Canut Matthieu, Tisné Sébastien, Gy Isabelle, Loudet Olivier
INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile, Santiago, Chile.
Max Planck Institute for Developmental Biology and Max Planck Institute for Intelligent Systems, 72076 Tuebingen, Germany European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.
Plant Cell. 2014 Nov;26(11):4298-310. doi: 10.1105/tpc.114.130310. Epub 2014 Nov 26.
cis- and trans-acting factors affect gene expression and responses to environmental conditions. However, for most plant systems, we lack a comprehensive map of these factors and their interaction with environmental variation. Here, we examined allele-specific expression (ASE) in an F1 hybrid to study how alleles from two Arabidopsis thaliana accessions affect gene expression. To investigate the effect of the environment, we used drought stress and developed a variance component model to estimate the combined genetic contributions of cis- and trans-regulatory polymorphisms, environmental factors, and their interactions. We quantified ASE for 11,003 genes, identifying 3318 genes with consistent ASE in control and stress conditions, demonstrating that cis-acting genetic effects are essentially robust to changes in the environment. Moreover, we found 1618 genes with genotype x environment (GxE) interactions, mostly cis x E interactions with magnitude changes in ASE. We found fewer trans x E interactions, but these effects were relatively less robust across conditions, showing more changes in the direction of the effect between environments; this confirms that trans-regulation plays an important role in the response to environmental conditions. Our data provide a detailed map of cis- and trans-regulation and GxE interactions in A. thaliana, laying the ground for mechanistic investigations and studies in other plants and environments.
顺式作用因子和反式作用因子影响基因表达以及对环境条件的响应。然而,对于大多数植物系统而言,我们缺乏这些因子及其与环境变异相互作用的全面图谱。在此,我们检测了一个F1杂种中的等位基因特异性表达(ASE),以研究来自两个拟南芥生态型的等位基因如何影响基因表达。为了研究环境的影响,我们使用干旱胁迫并建立了一个方差成分模型,以估计顺式调控和反式调控多态性、环境因子及其相互作用的综合遗传贡献。我们对11003个基因的ASE进行了量化,鉴定出在对照和胁迫条件下具有一致ASE的3318个基因,这表明顺式作用遗传效应在本质上对环境变化具有稳健性。此外,我们发现了1618个具有基因型x环境(GxE)相互作用的基因,其中大多数是顺式x环境相互作用,ASE存在幅度变化。我们发现反式x环境相互作用较少,但这些效应在不同条件下相对不那么稳健,在不同环境之间效应方向的变化更多;这证实了反式调控在对环境条件的响应中起重要作用。我们的数据提供了拟南芥中顺式调控和反式调控以及GxE相互作用的详细图谱,为其他植物和环境中的机制研究奠定了基础。