Matsubara Kazuki, Yamamoto Eiji, Mizobuchi Ritsuko, Yonemaru Jun-ichi, Yamamoto Toshio, Kato Hiroshi, Yano Masahiro
From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan.
J Hered. 2015 Jan-Feb;106(1):113-22. doi: 10.1093/jhered/esu065. Epub 2014 Nov 26.
Viability and fertility in organisms depend on epistatic interactions between loci maintained in lineages. Here, we describe reduced fitness of segregants (hybrid breakdown, HB) that emerged in an F2 population derived from a cross between 2 rice (Oryza sativa L.) cultivars, "Tachisugata" (TS) and "Hokuriku 193" (H193), despite both parents and F1s showing normal fitness. Quantitative trait locus (QTL) analyses detected 13 QTLs for 4 morphological traits associated with the HB and 6 associated with principal component scores calculated from values of the morphological traits in the F2 population. Two-way analysis of variance of the putative QTLs identified 4 QTL pairs showing significant epistasis; among them, a pair on chromosomes 1 and 12 made the greatest contribution to HB. The finding was supported by genetic experiments using F3 progeny. HB emerged only when a plant was homozygous for the TS allele at the QTL on chromosome 1 and homozygous for the H193 allele at the QTL on chromosome 12, indicating that each allele behaves as recessive to the other. Our results support the idea that epistasis is an essential part of hybrid fitness.
生物体的生存能力和繁殖力取决于世系中基因座之间的上位性相互作用。在此,我们描述了在由两个水稻(Oryza sativa L.)品种“立穗型”(TS)和“北陆193”(H193)杂交产生的F2群体中出现的分离后代(杂种衰败,HB)适应性降低的情况,尽管双亲及F1代均表现出正常的适应性。数量性状基因座(QTL)分析检测到与HB相关的4个形态性状的13个QTL以及与根据F2群体形态性状值计算的主成分得分相关的6个QTL。对推定的QTL进行的双向方差分析确定了4对显示出显著上位性的QTL;其中,位于第1号和第12号染色体上的一对QTL对HB的贡献最大。使用F3后代进行的遗传实验支持了这一发现。只有当植株在第1号染色体上的QTL处为TS等位基因纯合,且在第12号染色体上的QTL处为H193等位基因纯合时,才会出现HB,这表明每个等位基因相对于另一个等位基因为隐性。我们的结果支持上位性是杂种适应性的重要组成部分这一观点。