Cheng Yu-Huei
Department of Digital Content Design and Management, Toko University, Chiayi, Taiwan.
IET Nanobiotechnol. 2014 Dec;8(4):238-46. doi: 10.1049/iet-nbt.2013.0055.
Specific primers play an important role in polymerase chain reaction (PCR) experiments, and therefore it is essential to find specific primers of outstanding quality. Unfortunately, many PCR constraints must be simultaneously inspected which makes specific primer selection difficult and time-consuming. This paper introduces a novel computational intelligence-based method, Teaching-Learning-Based Optimisation, to select the specific and feasible primers. The specified PCR product lengths of 150-300 bp and 500-800 bp with three melting temperature formulae of Wallace's formula, Bolton and McCarthy's formula and SantaLucia's formula were performed. The authors calculate optimal frequency to estimate the quality of primer selection based on a total of 500 runs for 50 random nucleotide sequences of 'Homo species' retrieved from the National Center for Biotechnology Information. The method was then fairly compared with the genetic algorithm (GA) and memetic algorithm (MA) for primer selection in the literature. The results show that the method easily found suitable primers corresponding with the setting primer constraints and had preferable performance than the GA and the MA. Furthermore, the method was also compared with the common method Primer3 according to their method type, primers presentation, parameters setting, speed and memory usage. In conclusion, it is an interesting primer selection method and a valuable tool for automatic high-throughput analysis. In the future, the usage of the primers in the wet lab needs to be validated carefully to increase the reliability of the method.
特异性引物在聚合酶链反应(PCR)实验中起着重要作用,因此找到高质量的特异性引物至关重要。不幸的是,许多PCR限制条件必须同时检查,这使得特异性引物的选择既困难又耗时。本文介绍了一种基于新型计算智能的方法——基于教学学习的优化算法,用于选择特异性且可行的引物。使用了三种熔解温度公式(华莱士公式、博尔顿和麦卡锡公式以及圣卢西亚公式),分别对指定的150 - 300 bp和500 - 800 bp的PCR产物长度进行了实验。作者基于从美国国立生物技术信息中心检索到的50个“智人物种”随机核苷酸序列,总共运行500次,计算最佳频率以评估引物选择的质量。然后将该方法与文献中用于引物选择的遗传算法(GA)和混合算法(MA)进行了公平比较。结果表明,该方法能够轻松找到符合设定引物限制条件的合适引物,并且性能优于GA和MA。此外,还根据方法类型、引物展示、参数设置、速度和内存使用情况,将该方法与常用方法Primer3进行了比较。总之,这是一种有趣的引物选择方法,也是用于自动高通量分析的有价值工具。未来,需要在湿实验室中仔细验证引物的使用情况,以提高该方法的可靠性。