Rochoux M, Guo Y, Schuurman Y, Farrusseng D
IRCELYON, Université Lyon 1, CNRS - 2, Avenue Albert Einstein, F-69626 Villeurbanne, France.
Phys Chem Chem Phys. 2015 Jan 14;17(2):1469-81. doi: 10.1039/c4cp04243c. Epub 2014 Nov 28.
A novel, powerful method based on a microkinetic approach is described for the estimation of the oxygen transport parameters of mixed electronic conducting materials (MIECs). This method is validated on the perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ and has been applied on Ba0.5Sr0.5Co0.8Fe0.2O3-δ. This approach is original and relevant in that the surface kinetic rate constants are measured using a sample in powder form. In contrast to methods previously used, such as isotope exchange depth profiling (IEDP) and electrical conductivity relaxation (ECR), which determine the global exchange kinetic parameter, our microkinetic modelling approach allows the estimation of the forward and reverse kinetic rates accounting for the oxygen vacancy concentration. Also, the self-diffusion rate coefficient has been estimated at different oxygen partial pressures. This microkinetic approach, which combines SSITKA (steady-state isotopic transient kinetic analysis) and thermogravimetric measurements at controlled oxygen partial pressure, has the potential to significantly accelerate the characterization of oxygen transport in perovskites and related materials in the future. In this study, the kinetic parameters were measured in a temperature window between 873 K and 1173 K, and at two oxygen pressure conditions (21 kPa and 1 kPa) that are appropriate for simulating the semi-permeability of oxygen in a membrane in a process of oxygen separation from air.
描述了一种基于微观动力学方法的新颖、强大的方法,用于估算混合电子导电材料(MIECs)的氧传输参数。该方法在钙钛矿La0.6Sr0.4Co0.2Fe0.8O3-δ上得到验证,并已应用于Ba0.5Sr0.5Co0.8Fe0.2O3-δ。这种方法具有原创性且具有相关性,因为表面动力学速率常数是使用粉末形式的样品测量的。与先前使用的方法(如同位素交换深度剖析(IEDP)和电导率弛豫(ECR),它们确定全局交换动力学参数)不同,我们的微观动力学建模方法允许估算考虑氧空位浓度的正向和反向动力学速率。此外,还在不同氧分压下估算了自扩散速率系数。这种结合了稳态同位素瞬态动力学分析(SSITKA)和在可控氧分压下的热重测量的微观动力学方法,有可能在未来显著加速钙钛矿及相关材料中氧传输的表征。在本研究中,动力学参数是在873 K至1173 K的温度范围内以及两种适合模拟膜中氧在从空气中分离氧的过程中的半渗透性的氧压条件(21 kPa和1 kPa)下测量的。