Bal Kristof M, Neyts Erik C
Department of Chemistry, University of Antwerp, Research Group PLASMANT, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
J Chem Phys. 2014 Nov 28;141(20):204104. doi: 10.1063/1.4902136.
Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.
统一接受力偏置蒙特卡罗(fbMC)方法已被证明是一种在原子模拟中访问更长时间尺度的强大技术,例如可以用于研究相变和生长过程。最近,一种新的fbMC方法——时间戳力偏置蒙特卡罗(tfMC)方法被推导出来,其中包含了一个估计的有效时间尺度;然而,这个时间尺度似乎无法解释该方法取得的一些成功之处。因此,在本论文中,我们明确量化了tfMC能够访问的各种系统的有效时间尺度,这些系统包括一个简单的单粒子一维模型系统、 Lennard-Jones液体、Cu(100)表面上的一个吸附原子、具有点缺陷的硅晶体以及高度缺陷的石墨烯片,以便对tfMC的运行机制有新的认识。结果发现,对于固态系统,通过降低发生过程的表观活化能垒,与分子动力学相比,可以实现高达三个数量级的显著提升,同时不需要任何特定于系统的输入或方法修改。我们还讨论了将该方法用作分子动力学模拟的替代或补充时的陷阱、其明确描述正确动力学和反应机制的能力,以及一般情况下时间尺度与蒙特卡罗模拟的关联。