Bondareva J V, Smirnov S A, Potapov D O, Chernodubov D A, Dubinin O N, Maslakov K I, Egorova T B, Shibalova A A, Tarkhov M A, Khmelnitsky R A, Dravin V A, Orekhov N D, Shi X, Fedorov F S, Evlashin S A
Skolkovo Institute of Science and Technology, Moscow, Russia, 121205.
Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141701.
Sci Rep. 2025 Jul 1;15(1):20959. doi: 10.1038/s41598-025-03770-6.
While ion implantation is a well-established technology in microelectronics, its potential for modifying carbon-based electrochemical energy storage materials remains underexplored. This study breaks new ground by demonstrating high-energy (40 keV) argon ion implantation as an effective strategy for tailoring the structure and properties of carbon nanowalls, a significantly contrasting with conventional low-energy approaches. Our findings reveal distinctive implantation-induced effects: crystal lattice reorganization, nanoholes formation, and unexpected surface functionalization after air exposure despite using chemically inert argon ions. These phenomena, validated through molecular dynamic simulations, represent previously unreported effects of high-energy ion treatment on carbon nanostructures. We highlight an important dependence of both structural evolution and electrochemical performance on implantation dose. TEM analysis shows that the dose of 1 × 10 cm does not lead to structure modification evidenced by Raman spectroscopy, while the fluence of 5 × 10 cm makes the structure thicker with the high amorphization degree. However, at an optimal dose of 1×10 cm, the modified CNWs exhibit a fivefold capacitance enhancement (0.5 mF cm versus 0.1 mF cm for pristine CNWs), representing a unique compromise between beneficial defect generation and excessive structural damage. This study demonstrates the importance of optimizing ion implantation parameters to enhance material properties for supercapacitor applications.
虽然离子注入在微电子领域是一项成熟的技术,但其在改性碳基电化学储能材料方面的潜力仍未得到充分探索。本研究开辟了新的领域,证明了高能(40 keV)氩离子注入是一种调整碳纳米壁结构和性能的有效策略,这与传统的低能方法形成了显著对比。我们的研究结果揭示了独特的注入诱导效应:晶格重组、纳米孔形成,以及在暴露于空气后出现意外的表面功能化,尽管使用的是化学惰性的氩离子。这些现象通过分子动力学模拟得到验证,代表了高能离子处理对碳纳米结构的前所未有的影响。我们强调了结构演变和电化学性能对注入剂量的重要依赖性。透射电子显微镜(TEM)分析表明,1×10¹⁵ cm⁻²的剂量不会导致拉曼光谱所证明的结构改性,而5×10¹⁵ cm⁻²的注量会使结构变厚且非晶化程度高。然而,在1×10¹⁶ cm⁻²的最佳剂量下,改性的碳纳米壁表现出五倍的电容增强(从原始碳纳米壁的0.1 mF cm⁻²提高到0.5 mF cm⁻²),这代表了有益缺陷生成和过度结构损伤之间的独特平衡。本研究证明了优化离子注入参数以提高超级电容器应用材料性能的重要性。