Bârsan Oana A, Hoffmann Günter G, van der Ven Leo G J, de With G Bert
Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, Den Dolech 2 5612 AZ, Eindhoven, the Netherlands.
Faraday Discuss. 2014;173:365-77. doi: 10.1039/c4fd00087k.
Electrically conductive composite materials can be used for a wide range of applications because they combine the advantages of a specific polymeric material (e.g., thermal and mechanical properties) with the electrical properties of conductive filler particles. However, the overall electrical behaviour of these composite materials is usually much below the potential of the conductive fillers, mainly because by mixing two different components, new interfaces and interphases are created, changing the properties and behaviours of both. Our goal is to characterize and understand the nature and influence of these interfaces on the electrical properties of composite materials. We have improved a technique based on the use of sodium carboxymethyl cellulose (CMC) to disperse single-walled carbon nanotubes (SWCNTs) in water, followed by coating glass substrates, and drying and removing the CMC with a nitric acid treatment. We used electron microscopy and atomic force microscopy techniques to characterize the SWCNT films, and developed an in situ resistance measurement technique to analyse the influence of both the individual components and the mixture of an epoxy/amine system on the electrical behaviour of the SWCNTs. The results showed that impregnating a SWCNT network with a polymer is not the only factor that affects the film resistance; air exposure, temperature, physical and chemical properties of the individual polymer components, and also the formation of a polymeric network, can all have an influence on the macroscopic electrical properties of the initial SWCNT network. These results emphasize the importance of understanding the effects that each of the components can have on each other before trying to prepare an efficient polymer composite material.
导电复合材料可用于广泛的应用,因为它们将特定聚合物材料的优点(如热性能和机械性能)与导电填料颗粒的电学性能结合在一起。然而,这些复合材料的整体电学行为通常远低于导电填料的潜力,主要是因为通过混合两种不同的组分,会产生新的界面和中间相,从而改变了两者的性能和行为。我们的目标是表征和理解这些界面的性质及其对复合材料电学性能的影响。我们改进了一种基于使用羧甲基纤维素钠(CMC)将单壁碳纳米管(SWCNT)分散在水中,随后涂覆玻璃基板,并通过硝酸处理干燥和去除CMC的技术。我们使用电子显微镜和原子力显微镜技术来表征SWCNT薄膜,并开发了一种原位电阻测量技术,以分析环氧/胺体系的各个组分及其混合物对SWCNT电学行为的影响。结果表明,用聚合物浸渍SWCNT网络不是影响薄膜电阻的唯一因素;空气暴露、温度、各个聚合物组分的物理和化学性质以及聚合物网络的形成,都可能对初始SWCNT网络的宏观电学性能产生影响。这些结果强调了在尝试制备高效聚合物复合材料之前,了解各组分之间相互作用影响的重要性。