Suppr超能文献

疟原虫入侵红细胞相关蛋白质相互作用的计算预测

Computational prediction of protein interactions related to the invasion of erythrocytes by malarial parasites.

作者信息

Liu Xuewu, Huang Yuxiao, Liang Jiao, Zhang Shuai, Li Yinghui, Wang Jun, Shen Yan, Xu Zhikai, Zhao Ya

机构信息

Department of Pathogenic Biology, The Fourth Military Medical University, Xi'an, 710032, P. R. China.

出版信息

BMC Bioinformatics. 2014 Nov 30;15(1):393. doi: 10.1186/s12859-014-0393-z.

Abstract

BACKGROUND

The invasion of red blood cells (RBCs) by malarial parasites is an essential step in the life cycle of Plasmodium falciparum. Human-parasite surface protein interactions play a critical role in this process. Although several interactions between human and parasite proteins have been discovered, the mechanism related to invasion remains poorly understood because numerous human-parasite protein interactions have not yet been identified. High-throughput screening experiments are not feasible for malarial parasites due to difficulty in expressing the parasite proteins. Here, we performed computational prediction of the PPIs involved in malaria parasite invasion to elucidate the mechanism by which invasion occurs.

RESULTS

In this study, an expectation maximization algorithm was used to estimate the probabilities of domain-domain interactions (DDIs). Estimates of DDI probabilities were then used to infer PPI probabilities. We found that our prediction performance was better than that based on the information of D. melanogaster alone when information related to the six species was used. Prediction performance was assessed using protein interaction data from S. cerevisiae, indicating that the predicted results were reliable. We then used the estimates of DDI probabilities to infer interactions between 490 parasite and 3,787 human membrane proteins. A small-scale dataset was used to illustrate the usability of our method in predicting interactions between human and parasite proteins. The positive predictive value (PPV) was lower than that observed in S. cerevisiae. We integrated gene expression data to improve prediction accuracy and to reduce false positives. We identified 80 membrane proteins highly expressed in the schizont stage by fast Fourier transform method. Approximately 221 erythrocyte membrane proteins were identified using published mass spectral datasets. A network consisting of 205 interactions was predicted. Results of network analysis suggest that SNARE proteins of parasites and APP of humans may function in the invasion of RBCs by parasites.

CONCLUSIONS

We predicted a small-scale PPI network that may be involved in parasite invasion of RBCs by integrating DDI information and expression profiles. Experimental studies should be conducted to validate the predicted interactions. The predicted PPIs help elucidate the mechanism of parasite invasion and provide directions for future experimental investigations.

摘要

背景

疟原虫侵入红细胞是恶性疟原虫生命周期中的一个关键步骤。人-寄生虫表面蛋白相互作用在此过程中起着至关重要的作用。尽管已经发现了一些人与寄生虫蛋白之间的相互作用,但由于尚未鉴定出大量的人-寄生虫蛋白相互作用,与入侵相关的机制仍知之甚少。由于疟原虫蛋白表达困难,高通量筛选实验对疟原虫来说不可行。在此,我们对参与疟原虫入侵的蛋白质-蛋白质相互作用(PPI)进行了计算预测,以阐明入侵发生的机制。

结果

在本研究中,使用期望最大化算法来估计结构域-结构域相互作用(DDI)的概率。然后,利用DDI概率估计来推断PPI概率。我们发现,当使用与六个物种相关的信息时,我们的预测性能优于仅基于黑腹果蝇信息的预测性能。使用来自酿酒酵母的蛋白质相互作用数据评估预测性能,表明预测结果是可靠的。然后,我们利用DDI概率估计来推断490种寄生虫膜蛋白与3787种人类膜蛋白之间的相互作用。使用一个小规模数据集来说明我们的方法在预测人与寄生虫蛋白之间相互作用方面的实用性。阳性预测值(PPV)低于在酿酒酵母中观察到的值。我们整合了基因表达数据以提高预测准确性并减少假阳性。我们通过快速傅里叶变换方法鉴定了80种在裂殖体阶段高表达的膜蛋白。使用已发表的质谱数据集鉴定了约221种红细胞膜蛋白。预测了一个由205个相互作用组成的网络。网络分析结果表明,寄生虫的SNARE蛋白和人类的APP可能在寄生虫侵入红细胞的过程中发挥作用。

结论

我们通过整合DDI信息和表达谱预测了一个可能参与寄生虫侵入红细胞的小规模PPI网络。应进行实验研究以验证预测的相互作用。预测的PPI有助于阐明寄生虫入侵机制,并为未来的实验研究提供方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cfd/4265449/5a3851c87745/12859_2014_393_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验