Suppr超能文献

小鼠小脑颗粒细胞层和分子层中感觉刺激诱发反应的动态特性。

Dynamic properties of sensory stimulation evoked responses in mouse cerebellar granule cell layer and molecular layer.

作者信息

Bing Yan-Hua, Zhang Guang-Jian, Sun Lei, Chu Chun-Ping, Qiu De-Lai

机构信息

Cellular Function Research Center, Yanbian University, Yanji City, Jilin Province, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, China.

Cellular Function Research Center, Yanbian University, Yanji City, Jilin Province, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, China; Department of Pain, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, China.

出版信息

Neurosci Lett. 2015 Jan 12;585:114-8. doi: 10.1016/j.neulet.2014.11.037. Epub 2014 Nov 27.

Abstract

Sensory information coming from climbing fiber and mossy fiber-granule cell pathways, generates motor-related outputs according to internal rules of integration and computation in the cerebellar cortex. However, the dynamic properties of sensory information processing in mouse cerebellar cortex are less understood. Here, we studied the dynamic properties of sensory stimulation-evoked responses in the cerebellar granule cell layer (GCL) and molecular layer (ML) by electrophysiological recordings method. Our data showed that air-puff stimulation (5-10 ms in duration) of the ipsilateral whisker pad evoked single-peak responses in the GCL and ML; whereas a duration of stimulation ≥30 ms in GCL and ≥60 ms in ML, evoked double-peak responses that corresponded with stimulation-on and -off responses via mossy fiber pathway. The highest frequency of stimulation train for evoking GCL responses was 33 Hz. In contrast, the highest frequency of stimulation train for evoking ML responses was 4 Hz. These results indicate that the cerebellar granule cells transfer the high-fidelity sensory information from mossy fibers, which is cut-off by molecular layer interneurons (MLIs). Our results suggest that the MLIs network acts as a low-pass filter during the processing of high-frequency sensory information.

摘要

来自攀缘纤维和苔藓纤维-颗粒细胞通路的感觉信息,根据小脑皮质中整合和计算的内部规则产生与运动相关的输出。然而,小鼠小脑皮质中感觉信息处理的动态特性尚不太清楚。在这里,我们通过电生理记录方法研究了小脑颗粒细胞层(GCL)和分子层(ML)中感觉刺激诱发反应的动态特性。我们的数据表明,同侧触须垫的吹气刺激(持续时间5-10毫秒)在GCL和ML中诱发单峰反应;而在GCL中刺激持续时间≥30毫秒,在ML中≥60毫秒,则诱发双峰反应,这与通过苔藓纤维通路的刺激开启和关闭反应相对应。诱发GCL反应的刺激序列的最高频率为33赫兹。相比之下,诱发ML反应的刺激序列的最高频率为4赫兹。这些结果表明,小脑颗粒细胞从小苔藓纤维传递高保真感觉信息,而分子层中间神经元(MLIs)会切断该信息。我们的结果表明,在高频感觉信息处理过程中,MLIs网络起到低通滤波器的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验