Suppr超能文献

一种用于单核苷酸多态性(SNP)选择的图形加权功效改进多重校正方法。

A graphical weighted power improving multiplicity correction approach for SNP selections.

作者信息

Saunders Garrett, Fu Guifang, Stevens John R

机构信息

Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA.

出版信息

Curr Genomics. 2014 Oct;15(5):380-9. doi: 10.2174/138920291505141106103959.

Abstract

Controlling for the multiplicity effect is an essential part of determining statistical significance in large-scale single-locus association genome scans on Single Nucleotide Polymorphisms (SNPs). Bonferroni adjustment is a commonly used approach due to its simplicity, but is conservative and has low power for large-scale tests. The permutation test, which is a powerful and popular tool, is computationally expensive and may mislead in the presence of family structure. We propose a computationally efficient and powerful multiple testing correction approach for Linkage Disequilibrium (LD) based Quantitative Trait Loci (QTL) mapping on the basis of graphical weighted-Bonferroni methods. The proposed multiplicity adjustment method synthesizes weighted Bonferroni-based closed testing procedures into a powerful and versatile graphical approach. By tailoring different priorities for the two hypothesis tests involved in LD based QTL mapping, we are able to increase power and maintain computational efficiency and conceptual simplicity. The proposed approach enables strong control of the familywise error rate (FWER). The performance of the proposed approach as compared to the standard Bonferroni correction is illustrated by simulation and real data. We observe a consistent and moderate increase in power under all simulated circumstances, among different sample sizes, heritabilities, and number of SNPs. We also applied the proposed method to a real outbred mouse HDL cholesterol QTL mapping project where we detected the significant QTLs that were highlighted in the literature, while still ensuring strong control of the FWER.

摘要

控制多重性效应是在单核苷酸多态性(SNP)的大规模单基因座关联基因组扫描中确定统计显著性的重要组成部分。由于其简单性,Bonferroni校正法是一种常用的方法,但它较为保守,对于大规模检验的功效较低。置换检验是一种强大且流行的工具,但其计算成本高昂,并且在存在家族结构的情况下可能会产生误导。我们基于图形加权Bonferroni方法,提出了一种用于基于连锁不平衡(LD)的数量性状基因座(QTL)定位的计算高效且强大的多重检验校正方法。所提出的多重性调整方法将基于加权Bonferroni的封闭检验程序整合为一种强大且通用的图形方法。通过为基于LD的QTL定位中涉及的两个假设检验设定不同的优先级,我们能够提高功效,并保持计算效率和概念上的简单性。所提出的方法能够有效控制家族性错误率(FWER)。通过模拟和实际数据说明了所提出方法与标准Bonferroni校正相比的性能。我们观察到,在所有模拟情况下,不同样本量、遗传力和SNP数量下,功效都有一致且适度的提高。我们还将所提出的方法应用于一个真实的远交小鼠高密度脂蛋白胆固醇QTL定位项目,在该项目中我们检测到了文献中突出的显著QTL,同时仍确保对FWER的有效控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9390/4245697/22ba68fc5645/CG-15-380_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验