Basic Research Program, SAIC-Frederick, Inc. NCI-Frederick, Frederick, MD, USA.
BMC Genomics. 2010 Dec 22;11:724. doi: 10.1186/1471-2164-11-724.
As we enter an era when testing millions of SNPs in a single gene association study will become the standard, consideration of multiple comparisons is an essential part of determining statistical significance. Bonferroni adjustments can be made but are conservative due to the preponderance of linkage disequilibrium (LD) between genetic markers, and permutation testing is not always a viable option. Three major classes of corrections have been proposed to correct the dependent nature of genetic data in Bonferroni adjustments: permutation testing and related alternatives, principal components analysis (PCA), and analysis of blocks of LD across the genome. We consider seven implementations of these commonly used methods using data from 1514 European American participants genotyped for 700,078 SNPs in a GWAS for AIDS.
A Bonferroni correction using the number of LD blocks found by the three algorithms implemented by Haploview resulted in an insufficiently conservative threshold, corresponding to a genome-wide significance level of α = 0.15 - 0.20. We observed a moderate increase in power when using PRESTO, SLIDE, and simpleℳ when compared with traditional Bonferroni methods for population data genotyped on the Affymetrix 6.0 platform in European Americans (α = 0.05 thresholds between 1 × 10(-7) and 7 × 10(-8)).
Correcting for the number of LD blocks resulted in an anti-conservative Bonferroni adjustment. SLIDE and simpleℳ are particularly useful when using a statistical test not handled in optimized permutation testing packages, and genome-wide corrected p-values using SLIDE, are much easier to interpret for consumers of GWAS studies.
随着我们进入一个在单个基因关联研究中测试数百万个单核苷酸多态性(SNP)的时代,考虑多次比较成为确定统计显著性的重要部分。可以进行 Bonferroni 调整,但由于遗传标记之间存在大量的连锁不平衡(LD),因此调整结果偏保守,而且置换检验并不总是可行的选择。为了纠正 Bonferroni 调整中遗传数据的相关性,已经提出了三类主要的校正方法:置换检验和相关替代方法、主成分分析(PCA)以及基因组范围内 LD 块的分析。我们使用在 AIDS 的 GWAS 中对 1514 名欧洲裔美国人进行 700078 个 SNP 基因分型的数据,考虑了这些常用方法的七种实现。
使用 Haploview 实现的三种算法找到的 LD 块数量进行 Bonferroni 校正会导致阈值不够保守,对应于全基因组显著性水平为α=0.15-0.20。与传统的 Bonferroni 方法相比,当用于在欧洲裔美国人中基于 Affymetrix 6.0 平台基因分型的群体数据时,我们观察到使用 PRESTO、SLIDE 和 simpleℳ 时的功效适度增加(α=0.05 阈值在 1×10(-7)到 7×10(-8)之间)。
校正 LD 块数量会导致 Bonferroni 调整偏保守。当使用未在优化置换检验包中处理的统计检验时,SLIDE 和 simpleℳ 特别有用,并且使用 SLIDE 进行全基因组校正的 p 值对于 GWAS 研究的消费者来说更容易解释。