Suppr超能文献

RNA干扰及其在癌症治疗中的作用。

RNA interference and its role in cancer therapy.

作者信息

Mansoori Behzad, Sandoghchian Shotorbani Siamak, Baradaran Behzad

机构信息

Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

出版信息

Adv Pharm Bull. 2014 Dec;4(4):313-21. doi: 10.5681/apb.2014.046. Epub 2014 Aug 10.

Abstract

In todays' environment, it is becoming increasingly difficult to ignore the role of cancer in social health. Although a huge budget is allocated on cancer research every year, cancer remains the second global cause of death. And, exclusively, less than 50% of patients afflicted with advanced cancer live one year subsequent to standard cancer treatments. RNA interference (RNAi) is a mechanism for gene silencing. Such mechanism possesses uncanny ability in targeting cancer-related genes. A majority of gene products involved in tumorigenesis have recently been utilized as targets in RNAi based therapy. The evidence from these studies indicates that RNAi application for targeting functional carcinogenic molecules, tumor resistance to chemotherapy and radiotherapy is required in today's cancer treatment. Knock downing of gene products by RNAi technology exerts antiproliferative and proapoptotic effects upon cell culture systems, animal models and in clinical trials in the most studies. The recognition of RNAi mechanism and the progress in this field leaded several new RNAi-based drugs to Clinical Trial phases. This has also developed genome based personalized cancer therapeutics. Hopefully, this type of treatment will work as one of the efficient one for cancer patients.

摘要

在当今环境下,忽视癌症在社会健康中的作用变得越来越困难。尽管每年都在癌症研究上投入巨额预算,但癌症仍是全球第二大致死原因。而且,仅有不到50%的晚期癌症患者在接受标准癌症治疗后能存活一年。RNA干扰(RNAi)是一种基因沉默机制。这种机制在靶向癌症相关基因方面具有惊人的能力。最近,大多数参与肿瘤发生的基因产物已被用作基于RNAi疗法的靶点。这些研究的证据表明,在当今的癌症治疗中,需要应用RNAi来靶向功能性致癌分子、肿瘤对化疗和放疗的抗性。在大多数研究中,通过RNAi技术敲低基因产物对细胞培养系统、动物模型和临床试验产生抗增殖和促凋亡作用。对RNAi机制的认识以及该领域的进展使得几种基于RNAi的新药进入临床试验阶段。这也推动了基于基因组的个性化癌症治疗。希望这种治疗方式能成为癌症患者有效的治疗方法之一。

相似文献

1
RNA interference and its role in cancer therapy.
Adv Pharm Bull. 2014 Dec;4(4):313-21. doi: 10.5681/apb.2014.046. Epub 2014 Aug 10.
2
RNA-based Therapeutics: Past, Present and Future Prospects, Challenges in Cancer Treatment.
Curr Pharm Biotechnol. 2024;25(16):2125-2137. doi: 10.2174/0113892010291042240130171709.
3
Prospects of RNA interference therapy for cancer.
Gene Ther. 2006 Mar;13(6):464-77. doi: 10.1038/sj.gt.3302694.
5
Potential use of RNA interference in cancer therapy.
Expert Rev Mol Med. 2010 Aug 18;12:e26. doi: 10.1017/S1462399410001584.
6
The promise, pitfalls and progress of RNA-interference-based antiviral therapy for respiratory viruses.
Antivir Ther. 2012;17(1 Pt B):213-25. doi: 10.3851/IMP2064. Epub 2012 Feb 3.
8
Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
Early Hum Dev. 2009 Oct;85(10 Suppl):S31-5. doi: 10.1016/j.earlhumdev.2009.08.013. Epub 2009 Oct 14.
9
RNAi-mediated knockdown of MCM7 gene on CML cells and its therapeutic potential for leukemia.
Med Oncol. 2017 Feb;34(2):21. doi: 10.1007/s12032-016-0878-x. Epub 2017 Jan 5.
10
Inducible RNAi system and its application in novel therapeutics.
Crit Rev Biotechnol. 2016 Aug;36(4):630-8. doi: 10.3109/07388551.2014.1003030. Epub 2015 Feb 20.

引用本文的文献

1
Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics.
Front Bioeng Biotechnol. 2025 Jan 17;12:1499474. doi: 10.3389/fbioe.2024.1499474. eCollection 2024.
2
FOXR2 in cancer development: emerging player and therapeutic opportunities.
Oncol Res. 2025 Jan 16;33(2):283-300. doi: 10.32604/or.2024.052939. eCollection 2025.
3
Implicit Solvent with Explicit Ions Generalized Born Model in Molecular Dynamics: Application to DNA.
J Chem Theory Comput. 2024 Oct 8;20(19):8724-8739. doi: 10.1021/acs.jctc.4c00833. Epub 2024 Sep 16.
5
Advancing cancer treatments: The role of oligonucleotide-based therapies in driving progress.
Mol Ther Nucleic Acids. 2024 Jun 17;35(3):102256. doi: 10.1016/j.omtn.2024.102256. eCollection 2024 Sep 10.
6
RNA-based Therapeutics: Past, Present and Future Prospects, Challenges in Cancer Treatment.
Curr Pharm Biotechnol. 2024;25(16):2125-2137. doi: 10.2174/0113892010291042240130171709.
7
Targeting casein kinase 1 for cancer therapy: current strategies and future perspectives.
Front Oncol. 2023 Nov 8;13:1244775. doi: 10.3389/fonc.2023.1244775. eCollection 2023.
8
Cooperative Treatment of Gastric Cancer Using B7-H7 siRNA and Docetaxel; How Could They Modify Their Effectiveness?
Adv Pharm Bull. 2023 Jul;13(3):573-582. doi: 10.34172/apb.2023.055. Epub 2022 Jul 2.
9
Machine learning for small interfering RNAs: a concise review of recent developments.
Front Genet. 2023 Jul 13;14:1226336. doi: 10.3389/fgene.2023.1226336. eCollection 2023.
10
Advances with Lipid-Based Nanosystems for siRNA Delivery to Breast Cancers.
Pharmaceuticals (Basel). 2023 Jul 6;16(7):970. doi: 10.3390/ph16070970.

本文引用的文献

1
RNA interference and personalized cancer therapy.
Discov Med. 2013 Feb;15(81):101-10.
2
RNA interference therapeutics for cancer: challenges and opportunities (review).
Mol Med Rep. 2012 Jul;6(1):9-15. doi: 10.3892/mmr.2012.871. Epub 2012 Apr 18.
3
RNA-based therapeutics: current progress and future prospects.
Chem Biol. 2012 Jan 27;19(1):60-71. doi: 10.1016/j.chembiol.2011.12.008.
4
Current progress of siRNA/shRNA therapeutics in clinical trials.
Biotechnol J. 2011 Sep;6(9):1130-46. doi: 10.1002/biot.201100054. Epub 2011 Jul 11.
5
MicroRNA-offset RNAs (moRNAs): by-product spectators or functional players?
Trends Mol Med. 2011 Sep;17(9):473-4. doi: 10.1016/j.molmed.2011.05.005. Epub 2011 Jun 21.
6
Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models.
Clin Cancer Res. 2010 Nov 15;16(22):5469-80. doi: 10.1158/1078-0432.CCR-10-1994. Epub 2010 Nov 9.
7
Comprehensive comparative analysis of strand-specific RNA sequencing methods.
Nat Methods. 2010 Sep;7(9):709-15. doi: 10.1038/nmeth.1491. Epub 2010 Aug 15.
8
Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles.
Nature. 2010 Apr 15;464(7291):1067-70. doi: 10.1038/nature08956. Epub 2010 Mar 21.
9
Stressing out over tRNA cleavage.
Cell. 2009 Jul 23;138(2):215-9. doi: 10.1016/j.cell.2009.07.001.
10
Evolution, biogenesis and function of promoter-associated RNAs.
Cell Cycle. 2009 Aug;8(15):2332-8. doi: 10.4161/cc.8.15.9154. Epub 2009 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验