Suppr超能文献

通过计算药物化学应对多重用药问题。

Coping with polypharmacology by computational medicinal chemistry.

作者信息

Schneider Gisbert, Reker Daniel, Rodrigues Tiago, Schneider Petra

机构信息

Eidgenössische Technische Hochschule, Department of Chemistry and Applied Biosciences Computer-Assisted Drug Design, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland.

出版信息

Chimia (Aarau). 2014 Sep;68(9):648-53. doi: 10.2533/chimia.2014.648.

Abstract

Predicting the macromolecular targets of drug-like molecules has become everyday practice in medicinal chemistry. We present an overview of our recent research activities in the area of polypharmacology-guided drug design. A focus is put on the self-organizing map (SOM) as a tool for compound clustering and visualization. We show how the SOM can be efficiently used for target-panel prediction, drug re-purposing, and the design of focused compound libraries. We also present the concept of virtual organic synthesis in combination with quantitative estimates of ligand-receptor binding, which we used for de novo designing target-selective ligands. We expect these and related approaches to enable the future discovery of personalized medicines.

摘要

预测类药物分子的大分子靶点已成为药物化学领域的日常实践。我们概述了近期在多药理学导向药物设计领域的研究活动。重点介绍了自组织映射(SOM)作为化合物聚类和可视化工具的应用。我们展示了SOM如何有效地用于靶点预测、药物再利用以及聚焦化合物库的设计。我们还介绍了虚拟有机合成的概念,并结合配体-受体结合的定量估计,用于从头设计靶点选择性配体。我们期望这些方法及相关方法能够推动未来个性化药物的发现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验