使用Kinect检测跑步机行走中的步态周期。
Detection of gait cycles in treadmill walking using a Kinect.
作者信息
Auvinet Edouard, Multon Franck, Aubin Carl-Eric, Meunier Jean, Raison Maxime
机构信息
Ecole Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal H3C 3A7, Québec, Canada; CHU Sainte-Justine, 3175, Chemin de la Côte-Sainte-Catherine, Montréal H3T 1C5, Québec, Canada.
M2S Lab, University Rennes2, ENS Rennes, Campus de Ker lann, Avenue Robert Schuman, 35170 Bruz, France.
出版信息
Gait Posture. 2015 Feb;41(2):722-5. doi: 10.1016/j.gaitpost.2014.08.006. Epub 2014 Aug 20.
Treadmill walking is commonly used to analyze several gait cycles in a limited space. Depth cameras, such as the low-cost and easy-to-use Kinect sensor, look promising for gait analysis on a treadmill for routine outpatient clinics. However, gait analysis is based on accurately detecting gait events (such as heel-strike) by tracking the feet which may be incorrectly recognized with Kinect. Indeed depth images could lead to confusion between the ground and the feet around the contact phase. To tackle this problem we assume that heel-strike events could be indirectly estimated by searching for extreme values of the distance between knee joints along the walking longitudinal axis. To evaluate this assumption, the motion of 11 healthy subjects walking on a treadmill was recorded using both an optoelectronic system and Kinect. The measures were compared to reference heel-strike events obtained with vertical foot velocity. When using the optoelectronic system to assess knee joints, heel-strike estimation errors were very small (29±18ms) leading to small cycle durations errors (0±15ms). To locate knees in depth map (Kinect), we used anthropometrical data to select the body point located at a constant height where the knee should be based on a reference posture. This Kinect approach gave heel-strike errors of 17±24ms (mean cycle duration error: 0±12ms). Using this same anthropometric methodology with optoelectronic data, the heel-strike error was 12±12ms (mean cycle duration error: 0±11ms). Compared to previous studies using Kinect, heel-strike and gait cycles were more accurately estimated, which could improve clinical gait analysis with such sensor.
跑步机行走常用于在有限空间内分析多个步态周期。深度相机,如低成本且易于使用的Kinect传感器,在常规门诊诊所的跑步机步态分析方面看起来很有前景。然而,步态分析是基于通过跟踪脚部来准确检测步态事件(如脚跟撞击),而使用Kinect时脚部可能会被错误识别。实际上,深度图像可能会导致在接触阶段地面和脚部之间产生混淆。为了解决这个问题,我们假设可以通过搜索沿行走纵轴的膝关节之间距离的极值来间接估计脚跟撞击事件。为了评估这个假设,使用光电系统和Kinect记录了11名健康受试者在跑步机上行走的运动。将这些测量结果与通过垂直足部速度获得的参考脚跟撞击事件进行比较。当使用光电系统评估膝关节时,脚跟撞击估计误差非常小(29±18毫秒),导致周期持续时间误差也很小(0±15毫秒)。为了在深度图(Kinect)中定位膝盖,我们使用人体测量数据来选择基于参考姿势在膝盖应处的恒定高度的身体点。这种Kinect方法给出的脚跟撞击误差为17±24毫秒(平均周期持续时间误差:0±12毫秒)。使用相同的人体测量方法处理光电数据时,脚跟撞击误差为12±12毫秒(平均周期持续时间误差:0±11毫秒)。与之前使用Kinect的研究相比,脚跟撞击和步态周期的估计更准确,这可以改善使用这种传感器的临床步态分析。