Suppr超能文献

深度学习辅助神经退行性疾病步态参数评估:模型开发与验证。

Deep Learning-Assisted Gait Parameter Assessment for Neurodegenerative Diseases: Model Development and Validation.

机构信息

Institute of Software, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

J Med Internet Res. 2023 Jul 5;25:e46427. doi: 10.2196/46427.

Abstract

BACKGROUND

Neurodegenerative diseases (NDDs) are prevalent among older adults worldwide. Early diagnosis of NDD is challenging yet crucial. Gait status has been identified as an indicator of early-stage NDD changes and can play a significant role in diagnosis, treatment, and rehabilitation. Historically, gait assessment has relied on intricate but imprecise scales by trained professionals or required patients to wear additional equipment, causing discomfort. Advancements in artificial intelligence may completely transform this and offer a novel approach to gait evaluation.

OBJECTIVE

This study aimed to use cutting-edge machine learning techniques to offer patients a noninvasive, entirely contactless gait assessment and provide health care professionals with precise gait assessment results covering all common gait-related parameters to assist in diagnosis and rehabilitation planning.

METHODS

Data collection involved motion data from 41 different participants aged 25 to 85 (mean 57.51, SD 12.93) years captured in motion sequences using the Azure Kinect (Microsoft Corp; a 3D camera with a 30-Hz sampling frequency). Support vector machine (SVM) and bidirectional long short-term memory (Bi-LSTM) classifiers trained using spatiotemporal features extracted from raw data were used to identify gait types in each walking frame. Gait semantics could then be obtained from the frame labels, and all the gait parameters could be calculated accordingly. For optimal generalization performance of the model, the classifiers were trained using a 10-fold cross-validation strategy. The proposed algorithm was also compared with the previous best heuristic method. Qualitative and quantitative feedback from medical staff and patients in actual medical scenarios was extensively collected for usability analysis.

RESULTS

The evaluations comprised 3 aspects. Regarding the classification results from the 2 classifiers, Bi-LSTM achieved an average precision, recall, and F-score of 90.54%, 90.41%, and 90.38%, respectively, whereas these metrics were 86.99%, 86.62%, and 86.67%, respectively, for SVM. Moreover, the Bi-LSTM-based method attained 93.2% accuracy in gait segmentation evaluation (tolerance set to 2), whereas that of the SVM-based method achieved only 77.5% accuracy. For the final gait parameter calculation result, the average error rate of the heuristic method, SVM, and Bi-LSTM was 20.91% (SD 24.69%), 5.85% (SD 5.45%), and 3.17% (SD 2.75%), respectively.

CONCLUSIONS

This study demonstrated that the Bi-LSTM-based approach can effectively support accurate gait parameter assessment, assisting medical professionals in making early diagnoses and reasonable rehabilitation plans for patients with NDD.

摘要

背景

神经退行性疾病(NDD)在全球老年人中普遍存在。早期诊断 NDD 具有挑战性,但至关重要。步态状况已被确定为早期 NDD 变化的指标,在诊断、治疗和康复中发挥着重要作用。传统上,步态评估依赖于经过训练的专业人员使用复杂但不精确的量表,或者要求患者佩戴额外的设备,这会引起不适。人工智能的进步可能会彻底改变这一点,并为步态评估提供一种新方法。

目的

本研究旨在使用先进的机器学习技术为患者提供一种非侵入性、完全无接触的步态评估,并为医疗保健专业人员提供涵盖所有常见与步态相关参数的精确步态评估结果,以协助诊断和康复计划。

方法

数据采集涉及 41 名年龄在 25 岁至 85 岁(平均 57.51,标准差 12.93)的参与者的运动数据,这些参与者在使用 Azure Kinect(Microsoft Corp;具有 30 Hz 采样频率的 3D 相机)的运动序列中进行了捕捉。使用从原始数据中提取的时空特征训练支持向量机(SVM)和双向长短期记忆(Bi-LSTM)分类器,以识别每个行走帧中的步态类型。然后可以从帧标签中获取步态语义,并相应地计算所有步态参数。为了实现模型的最佳泛化性能,使用 10 折交叉验证策略对分类器进行训练。还将提出的算法与之前最好的启发式方法进行了比较。为了进行可用性分析,从实际医疗场景中的医疗人员和患者那里广泛收集了定性和定量的反馈。

结果

评估包括 3 个方面。关于 2 个分类器的分类结果,Bi-LSTM 的平均精度、召回率和 F1 得分为 90.54%、90.41%和 90.38%,而 SVM 的相应值为 86.99%、86.62%和 86.67%。此外,基于 Bi-LSTM 的方法在步态分割评估中达到了 93.2%的准确率(容忍度设置为 2),而基于 SVM 的方法仅达到了 77.5%的准确率。对于最终的步态参数计算结果,启发式方法、SVM 和 Bi-LSTM 的平均误差率分别为 20.91%(SD 24.69%)、5.85%(SD 5.45%)和 3.17%(SD 2.75%)。

结论

本研究表明,基于 Bi-LSTM 的方法可以有效地支持准确的步态参数评估,帮助医疗专业人员对 NDD 患者进行早期诊断和合理的康复计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8843/10357315/afe3e40ee903/jmir_v25i1e46427_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验