Bhattarai Jay K, Sharma Abeera, Fujikawa Kohki, Demchenko Alexei V, Stine Keith J
Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States; Center for Nanoscience, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States.
Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, United States.
Carbohydr Res. 2015 Mar 20;405:55-65. doi: 10.1016/j.carres.2014.08.019. Epub 2014 Sep 16.
Localized surface plasmon resonance (LSPR) spectroscopy is a label-free chemical and biological molecular sensing technique whose sensitivity depends upon development of nanostructured transducers. Herein, we report an electrodeposition method for fabricating nanostructured gold films (NGFs) that can be used as transducers in LSPR spectroscopy. The NGF was prepared by electrodepositing gold from potassium dicyanoaurate solution onto a flat gold surface using two sequential controlled potential steps. Imaging by scanning electron microscopy reveals a morphology consisting of randomly configured block-like nanostructures. The bulk refractive index sensitivity of the prepared NGF is 100±2 nmRIU(-1) and the initial peak in the reflectance spectrum is at 518±1 nm under N2(g). The figure of merit is 1.7. In addition, we have studied the interaction between carbohydrate (mannose) and lectin (Concanavalin A) on the NGF surface using LSPR spectroscopy by measuring the interaction of 8-mercaptooctyl-α-d-mannopyranoside (αMan-C8-SH) with Concanavalin A by first immobilizing αMan-C8-SH in mixed SAMs with 3,6-dioxa-8-mercaptooctanol (TEG-SH) on the NGF surface. The interaction of Con A with the mixed SAMs is confirmed using electrochemical impedance spectroscopy. Finally, the NGF surface was regenerated to its original sensitivity by removing the SAM and the bound biomolecules. The results from these experiments contribute toward the development of inexpensive LSPR based sensors that could be useful for studying glycan-protein interactions and other bioanalytical purposes.
局域表面等离子体共振(LSPR)光谱法是一种无标记的化学和生物分子传感技术,其灵敏度取决于纳米结构换能器的发展。在此,我们报道了一种用于制备纳米结构金膜(NGF)的电沉积方法,该金膜可用于LSPR光谱法中的换能器。通过使用两个连续的控制电位步骤,将二氰合金酸钾溶液中的金电沉积到平坦的金表面上,制备出了NGF。扫描电子显微镜成像显示其形态由随机配置的块状纳米结构组成。制备的NGF的体折射率灵敏度为100±2 nmRIU(-1),在N2(g)气氛下,反射光谱中的初始峰值位于518±1 nm处。品质因数为1.7。此外,我们通过将8-巯基辛基-α-D-甘露吡喃糖苷(αMan-C8-SH)与伴刀豆球蛋白A的相互作用固定在NGF表面的3,6-二氧杂-8-巯基辛醇(TEG-SH)混合自组装单分子层中,利用LSPR光谱法研究了NGF表面碳水化合物(甘露糖)与凝集素(伴刀豆球蛋白A)之间的相互作用。使用电化学阻抗谱证实了伴刀豆球蛋白A与混合自组装单分子层的相互作用。最后,通过去除自组装单分子层和结合的生物分子,使NGF表面恢复到其原始灵敏度。这些实验结果有助于开发基于LSPR的廉价传感器,可用于研究聚糖-蛋白质相互作用及其他生物分析目的。