Suppr超能文献

结核病中的趋化因子:有益的、有害的和丑陋的。

Chemokines in tuberculosis: the good, the bad and the ugly.

作者信息

Monin Leticia, Khader Shabaana A

机构信息

Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.

Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.

出版信息

Semin Immunol. 2014 Dec;26(6):552-8. doi: 10.1016/j.smim.2014.09.004. Epub 2014 Oct 22.

Abstract

Mycobacterium tuberculosis (Mtb) infects about one-third of the world's population, with a majority of infected individuals exhibiting latent asymptomatic infection, while 5-10% of infected individuals progress to active pulmonary disease. Research in the past two decades has elucidated critical host immune mechanisms that mediate Mtb control. Among these, chemokines have been associated with numerous key processes that lead to Mtb containment, from recruitment of myeloid cells into the lung to activation of adaptive immunity, formation of protective granulomas and vaccine recall responses. However, imbalances in several key chemokine mediators can alter the delicate balance of cytokines and cellular responses that promote mycobacterial containment, instead precipitating terminal tissue destruction and spread of Mtb infection. In this review, we will describe recent insights in the involvement of chemokines in host responses to Mtb infection and Mtb containment (the good), chemokines contributing to inflammation during TB (the bad), and the role of chemokines in driving cavitation and lung pathology (the ugly).

摘要

结核分枝杆菌(Mtb)感染了全球约三分之一的人口,大多数感染者表现为潜伏无症状感染,而5-10%的感染者会发展为活动性肺结核。过去二十年的研究阐明了介导Mtb控制的关键宿主免疫机制。其中,趋化因子与导致Mtb遏制的众多关键过程相关,从髓样细胞募集到肺部到适应性免疫激活、保护性肉芽肿形成和疫苗召回反应。然而,几种关键趋化因子介质的失衡会改变促进分枝杆菌遏制的细胞因子和细胞反应的微妙平衡,反而会导致终末期组织破坏和Mtb感染扩散。在本综述中,我们将描述趋化因子在宿主对Mtb感染和Mtb遏制反应中的最新见解(好的方面)、趋化因子在结核病期间促成炎症的作用(坏的方面)以及趋化因子在导致空洞形成和肺部病理中的作用(丑陋的方面)。

相似文献

1
Chemokines in tuberculosis: the good, the bad and the ugly.
Semin Immunol. 2014 Dec;26(6):552-8. doi: 10.1016/j.smim.2014.09.004. Epub 2014 Oct 22.
3
Pro- and anti-inflammatory cytokines in tuberculosis: a two-edged sword in TB pathogenesis.
Semin Immunol. 2014 Dec;26(6):543-51. doi: 10.1016/j.smim.2014.09.011. Epub 2014 Nov 8.
4
IL-22: An Underestimated Player in Natural Resistance to Tuberculosis?
Front Immunol. 2018 Sep 25;9:2209. doi: 10.3389/fimmu.2018.02209. eCollection 2018.
5
Inflammasome genetics contributes to the development and control of active pulmonary tuberculosis.
Infect Genet Evol. 2016 Jul;41:240-244. doi: 10.1016/j.meegid.2016.04.015. Epub 2016 Apr 19.
6
Tuberculosis as a three-act play: A new paradigm for the pathogenesis of pulmonary tuberculosis.
Tuberculosis (Edinb). 2016 Mar;97:8-17. doi: 10.1016/j.tube.2015.11.010. Epub 2016 Jan 2.
7
Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis.
Semin Immunopathol. 2016 Mar;38(2):153-66. doi: 10.1007/s00281-015-0531-3. Epub 2015 Oct 5.
8
Spontaneous latency in a rabbit model of pulmonary tuberculosis.
Am J Pathol. 2012 Nov;181(5):1711-24. doi: 10.1016/j.ajpath.2012.07.019. Epub 2012 Sep 5.
9
Chemokines shape the immune responses to tuberculosis.
Cytokine Growth Factor Rev. 2013 Apr;24(2):105-13. doi: 10.1016/j.cytogfr.2012.10.002. Epub 2012 Nov 16.
10
CXCL17 Is Dispensable during Hypervirulent HN878 Infection in Mice.
Immunohorizons. 2021 Sep 24;5(9):752-759. doi: 10.4049/immunohorizons.2100048.

引用本文的文献

1
CD39 dynamics in tuberculosis: a potential biomarker of immune dysregulation and T cell exhaustion.
Front Immunol. 2025 Aug 11;16:1601637. doi: 10.3389/fimmu.2025.1601637. eCollection 2025.
2
Comparative transcriptomic analysis of mouse macrophages infected with live attenuated vaccine strains of .
Front Immunol. 2025 Jul 11;16:1583439. doi: 10.3389/fimmu.2025.1583439. eCollection 2025.
3
Role of Tumor Necrosis Factor in Tuberculosis.
Biomolecules. 2025 May 12;15(5):709. doi: 10.3390/biom15050709.
4
Characterizing TLR4 agonist EmT4™ as an anti-Mycobacterium tuberculosis vaccine adjuvant.
Immunohorizons. 2025 Apr 26;9(6). doi: 10.1093/immhor/vlaf014.
7
Global proteomics reveals pathways of mesenchymal stem cells altered by Mycobacterium tuberculosis.
Sci Rep. 2024 Dec 28;14(1):30677. doi: 10.1038/s41598-024-75722-5.
8
9
Chemokine expression profile of an innate granuloma.
Elife. 2024 Nov 14;13:RP96425. doi: 10.7554/eLife.96425.
10
and host interactions in the manifestation of tuberculosis.
J Clin Tuberc Other Mycobact Dis. 2024 Jun 14;36:100458. doi: 10.1016/j.jctube.2024.100458. eCollection 2024 Aug.

本文引用的文献

2
Ectopic lymphoid-like structures in infection, cancer and autoimmunity.
Nat Rev Immunol. 2014 Jul;14(7):447-62. doi: 10.1038/nri3700. Epub 2014 Jun 20.
3
Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming.
Cell Host Microbe. 2014 Jun 11;15(6):741-52. doi: 10.1016/j.chom.2014.05.007.
4
Tuberculosis, pulmonary cavitation, and matrix metalloproteinases.
Am J Respir Crit Care Med. 2014 Jul 1;190(1):9-18. doi: 10.1164/rccm.201311-2106PP.
5
CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis.
J Clin Invest. 2014 Mar;124(3):1268-82. doi: 10.1172/JCI72030. Epub 2014 Feb 10.
7
8
S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis.
Am J Respir Crit Care Med. 2013 Nov 1;188(9):1137-46. doi: 10.1164/rccm.201304-0803OC.
9
Macrophages in tuberculosis: friend or foe.
Semin Immunopathol. 2013 Sep;35(5):563-83. doi: 10.1007/s00281-013-0388-2. Epub 2013 Jul 18.
10
Elevated IP-10 and IL-6 from bronchoalveolar lavage cells are biomarkers of non-cavitary tuberculosis.
Int J Tuberc Lung Dis. 2013 Jul;17(7):922-7. doi: 10.5588/ijtld.12.0610.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验