Van den Bossche Jan, Neele Annette E, Hoeksema Marten A, de Heij Femke, Boshuizen Marieke C S, van der Velden Saskia, de Boer Vincent C, Reedquist Kris A, de Winther Menno P J
Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, Amsterdam, The Netherlands.
Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, Amsterdam, The Netherlands.
Biochem Biophys Res Commun. 2014 Dec 12;455(3-4):396-402. doi: 10.1016/j.bbrc.2014.11.029. Epub 2014 Nov 18.
Macrophages determine the outcome of atherosclerosis by propagating inflammatory responses, foam cell formation and eventually necrotic core development. Yet, the pathways that regulate their atherogenic functions remain ill-defined. It is now apparent that chromatin remodeling chromatin modifying enzymes (CME) governs immune responses but it remains unclear to what extent they control atherogenic macrophage functions. We hypothesized that epigenetic mechanisms regulate atherogenic macrophage functions, thereby determining the outcome of atherosclerosis. Therefore, we designed a quantitative semi-high-throughput screening platform and studied whether the inhibition of CME can be applied to improve atherogenic macrophage activities. We found that broad spectrum inhibition of histone deacetylases (HDACs) and histone methyltransferases (HMT) has both pro- and anti-inflammatory effects. The inhibition of HDACs increased histone acetylation and gene expression of the cholesterol efflux regulators ATP-binding cassette transporters ABCA1 and ABCG1, but left foam cell formation unaffected. HDAC inhibition altered macrophage metabolism towards enhanced glycolysis and oxidative phosphorylation and resulted in protection against apoptosis. Finally, we applied inhibitors against specific HDACs and found that HDAC3 inhibition phenocopies the atheroprotective effects of pan-HDAC inhibitors. Based on our data, we propose the inhibition of HDACs, and in particular HDAC3, in macrophages as a novel potential target to treat atherosclerosis.
巨噬细胞通过引发炎症反应、促进泡沫细胞形成以及最终导致坏死核心发展来决定动脉粥样硬化的结局。然而,调节其致动脉粥样硬化功能的信号通路仍不明确。目前已知染色质重塑染色质修饰酶(CME)调控免疫反应,但它们在多大程度上控制致动脉粥样硬化巨噬细胞的功能仍不清楚。我们推测表观遗传机制调节致动脉粥样硬化巨噬细胞的功能,从而决定动脉粥样硬化的结局。因此,我们设计了一个定量半高通量筛选平台,并研究抑制CME是否可用于改善致动脉粥样硬化巨噬细胞的活性。我们发现组蛋白去乙酰化酶(HDAC)和组蛋白甲基转移酶(HMT)的广谱抑制具有促炎和抗炎双重作用。抑制HDAC可增加组蛋白乙酰化以及胆固醇流出调节因子ATP结合盒转运体ABCA1和ABCG1的基因表达,但对泡沫细胞形成没有影响。HDAC抑制使巨噬细胞代谢转向增强糖酵解和氧化磷酸化,并提供抗凋亡保护。最后,我们应用针对特定HDAC的抑制剂,发现抑制HDAC3可模拟泛HDAC抑制剂的动脉粥样硬化保护作用。基于我们的数据,我们提出抑制巨噬细胞中的HDAC,特别是HDAC3,作为治疗动脉粥样硬化的一种新的潜在靶点。