Suppr超能文献

用于荟萃分析的统计方法,包括来自无任何事件研究的信息——无中生有却仍能成功。

Statistical methods for meta-analyses including information from studies without any events-add nothing to nothing and succeed nevertheless.

作者信息

Kuss O

机构信息

Institute for Biometry and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

出版信息

Stat Med. 2015 Mar 30;34(7):1097-116. doi: 10.1002/sim.6383. Epub 2014 Dec 1.

Abstract

Meta-analyses with rare events, especially those that include studies with no event in one ('single-zero') or even both ('double-zero') treatment arms, are still a statistical challenge. In the case of double-zero studies, researchers in general delete these studies or use continuity corrections to avoid them. A number of arguments against both options has been given, and statistical methods that use the information from double-zero studies without using continuity corrections have been proposed. In this paper, we collect them and compare them by simulation. This simulation study tries to mirror real-life situations as completely as possible by deriving true underlying parameters from empirical data on actually performed meta-analyses. It is shown that for each of the commonly encountered effect estimators valid statistical methods are available that use the information from double-zero studies without using continuity corrections. Interestingly, all of them are truly random effects models, and so also the current standard method for very sparse data as recommended from the Cochrane collaboration, the Yusuf-Peto odds ratio, can be improved on. For actual analysis, we recommend to use beta-binomial regression methods to arrive at summary estimates for the odds ratio, the relative risk, or the risk difference. Methods that ignore information from double-zero studies or use continuity corrections should no longer be used. We illustrate the situation with an example where the original analysis ignores 35 double-zero studies, and a superior analysis discovers a clinically relevant advantage of off-pump surgery in coronary artery bypass grafting.

摘要

针对罕见事件的荟萃分析,尤其是那些包含在一个治疗组(“单零”)甚至两个治疗组(“双零”)中都没有事件发生的研究的荟萃分析,仍然是一个统计学挑战。在双零研究的情况下,研究人员通常会删除这些研究或使用连续性校正来避免它们。已经有人针对这两种选择提出了一些反对意见,并且已经提出了一些不使用连续性校正而利用双零研究信息的统计方法。在本文中,我们收集了这些方法并通过模拟进行比较。这项模拟研究试图通过从实际进行的荟萃分析的经验数据中推导真实的潜在参数,尽可能全面地反映现实情况。结果表明,对于每种常见的效应估计量,都有有效的统计方法可以利用双零研究的信息而不使用连续性校正。有趣的是,所有这些方法都是真正的随机效应模型,因此,科克伦协作网推荐的用于非常稀疏数据的当前标准方法——尤瑟夫 - 佩托比值比,也可以得到改进。对于实际分析,我们建议使用贝塔 - 二项式回归方法来得出比值比、相对风险或风险差的汇总估计值。不应再使用忽略双零研究信息或使用连续性校正的方法。我们通过一个例子来说明这种情况,在该例子中,原始分析忽略了35项双零研究,而一种更好的分析发现了非体外循环心脏手术在冠状动脉旁路移植术中具有临床相关优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验