Suppr超能文献

多排螺旋 CT 增强模式预测胰腺内分泌肿瘤的恶性程度。

Contrast enhancement pattern on multidetector CT predicts malignancy in pancreatic endocrine tumours.

机构信息

Diagnostic and Interventional Radiology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy,

出版信息

Eur Radiol. 2015 Mar;25(3):751-9. doi: 10.1007/s00330-014-3485-2. Epub 2014 Dec 2.

Abstract

OBJECTIVES

Preoperative suspicion of malignancy in pancreatic neuroendocrine tumours (pNETs) is mostly based on tumour size. We retrospectively reviewed the contrast enhancement pattern (CEP) of a series of pNETs on multiphasic multidetector computed tomography (MDCT), to identify further imaging features predictive of lesion aggressiveness.

METHODS

Sixty pNETs, diagnosed in 52 patients, were classified based on CEP as: type A showing early contrast enhancement and rapid wash-out; type B presenting even (B1) or only (B2) late enhancement. All tumours were resected allowing pathologic correlations.

RESULTS

Nineteen pNETs showed type A CEP (5-20 mm), 29 type B1 CEP (5-80 mm) and 12 type B2 (15-100 mm). All tumours were classified as well differentiated tumours, 19 were benign (WDt-b), 15 with uncertain behaviour (WDt-u) and 26 carcinomas (WDC). None of A lesions were malignant (12 WDt-b; 7 WDt-u), all B2 lesions were WDC, 7 B1 lesions were WDt-b, 8 WDt-u and 14 WDC; 4/34 (12 %) lesions ≤2cm were WDC. CEP showed correlation with all histological prognostic indicators.

CONCLUSIONS

Correlating with the lesion grading and other histological prognostic predictors, CEP may preoperatively suggest the behaviour of pNETs, assisting decisions about treatment. Moreover CEP allows recognition of malignant small tumours, incorrectly classified on the basis of their dimension.

摘要

目的

术前对胰腺神经内分泌肿瘤(pNET)恶性程度的怀疑主要基于肿瘤大小。我们回顾性分析了一系列多期多层螺旋 CT(MDCT)上的肿瘤增强模式(CEP),以确定进一步预测病变侵袭性的影像学特征。

方法

根据 CEP 将 60 例 pNET 分为以下类型:A 型表现为早期增强和快速廓清;B 型表现为均匀(B1)或仅(B2)延迟增强。所有肿瘤均经手术切除,以进行病理相关性分析。

结果

19 例 pNET 显示 A 型 CEP(5-20mm),29 例显示 B1 型 CEP(5-80mm),12 例显示 B2 型 CEP(15-100mm)。所有肿瘤均被分类为高分化肿瘤,19 例为良性(WDt-b),15 例为行为不确定(WDt-u),26 例为癌(WDC)。A 型病变均为良性(12 例 WDt-b;7 例 WDt-u),所有 B2 型病变均为 WDC,7 例 B1 型病变为 WDt-b,8 例 WDt-u 和 14 例 WDC;4/34(12%)直径≤2cm 的病变为 WDC。CEP 与所有组织学预后指标相关。

结论

CEP 与病变分级和其他组织学预后预测因子相关,可术前提示 pNET 的行为,辅助治疗决策。此外,CEP 还可识别恶性小肿瘤,这些肿瘤基于其大小而被错误分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验