Otsu K, Kinsella J, Sacktor B, Froehlich J P
Laboratory of Biological Chemistry, National Institute on Aging, Baltimore, MD 21224.
Proc Natl Acad Sci U S A. 1989 Jul;86(13):4818-22. doi: 10.1073/pnas.86.13.4818.
Pre-steady-state kinetic measurements of 22Na+ uptake by the amiloride-sensitive Na+-H+ exchanger in renal brush border membrane vesicles (BBMV) were performed at 0 degrees C to characterize the intermediate reactions of the exchange cycle. At 1 mM Na+, the initial time course of Na+ uptake was resolved into three separate components: (i) a lag phase, (ii) an exponential or "burst" phase, and (iii) a constant velocity or steady-state phase. Pulse-chase experiments using partially loaded BBMV showed no evidence for 22Na+ back-flux, suggesting that the decline in the rate of Na+ uptake rate following the burst represents completion of the first turnover of the exchanger. Gramicidin completely abolished Na+ uptake, indicating that the burst phase results from the translocation of Na+ rather than from residual Na+ binding to external sites. Raising the [Na+] from 1 to 10 mM at constant pH (internal pH 5.7; external pH 7.7) produced a sigmoidal increase in the amplitude of the burst phase without affecting the lag duration or the apparent burst rate. In contrast, Na+ uptake in the steady state obeyed Michaelis-Menten kinetics. These results suggest that a minimum of two Na+ transport sites must be occupied to activate Na+ uptake in the pre-steady state. The transition to Michaelis-Menten kinetics in the steady state can be explained by a "flip-flop" or alternating site mechanism in which the functional transport unit is an oligomer and only one promoter per cycle is allowed to form a translocation complex with Na+ after the first turnover.
在0℃下对肾刷状缘膜囊泡(BBMV)中amiloride敏感的Na⁺-H⁺交换体摄取²²Na⁺进行了预稳态动力学测量,以表征交换循环的中间反应。在1 mM Na⁺时,Na⁺摄取的初始时间进程可分为三个独立的部分:(i)一个延迟期,(ii)一个指数或“爆发”期,以及(iii)一个恒定速度或稳态期。使用部分装载的BBMV进行的脉冲追踪实验未显示²²Na⁺反向通量的证据,这表明爆发后Na⁺摄取速率的下降代表交换体第一次周转的完成。短杆菌肽完全消除了Na⁺摄取,表明爆发期是由Na⁺的转运引起的,而不是由于残留的Na⁺与外部位点的结合。在恒定pH(内部pH 5.7;外部pH 7.7)下将[Na⁺]从1 mM提高到10 mM,会使爆发期的幅度呈S形增加,而不影响延迟持续时间或表观爆发速率。相比之下,稳态下的Na⁺摄取遵循米氏动力学。这些结果表明,在预稳态下至少必须占据两个Na⁺转运位点才能激活Na⁺摄取。稳态向米氏动力学的转变可以用“翻转”或交替位点机制来解释,其中功能转运单元是一个寡聚体,并且在第一次周转后每个循环只允许一个启动子与Na⁺形成转运复合物。