Chenu C, Berteloot A
Department of Physiology, Faculty of Medicine, University of Montreal, Quebec, Canada.
J Membr Biol. 1993 Mar;132(2):95-113. doi: 10.1007/BF00239000.
We first present two simple dimeric models of cotransport that may account for all of the kinetics of Na(+)-D-glucose cotransport published so far in the small intestine. Both the sigmoidicity in the Na+ activation of transport (positive cooperativity) and the upward deviations from linearity in the Eadie-Hofstee plots relative to glucose concentrations (negative cooperativity) can be rationalized within the concept of allosteric kinetic mechanisms corresponding to either of two models involving sequential or mixed concerted and sequential conformational changes. Such models also allow for 2 Na+: 1 S and 1 Na+: 1 S stoichiometries of cotransport at low and high substrate concentrations, respectively, and for partial inhibition by inhibitors or substrate analogues. Moreover, it is shown that the dimeric models may present physiological advantages over the seemingly admitted hypothesis of two different cotransporters in that tissue. We next address the reevaluation of Na(+)-D-glucose cotransport kinetics in rabbit intestinal brush border membrane vesicles using stable membrane preparations, a dynamic approach with the Fast Sampling Rapid Filtration Apparatus (FSRFA), and both nonlinear regression and statistical analyses. Under different conditions of temperatures, Na+ concentrations, and membrane potentials clamped using two different techniques, we demonstrate that our data can be fully accounted for by the presence of only one carrier in rabbit jejunal brush border membranes since transport kinetics relative to glucose concentrations satisfy simple Michaelis-Menten kinetics. Although supporting a monomeric structure of the cotransporter, such a conclusion would conflict with previous kinetic data and more recent studies implying a polymeric structure of the carrier protein. We thus consider a number of alternatives trying to reconcile the observation of Michaelis-Menten kinetics with allosteric mechanisms of cotransport associated with both positive and negative cooperativities for Na+ and glucose binding, respectively. Such models, implying energy storage and release steps through conformational changes associated with ligand binding to an allosteric protein, provide a rational hypothesis to understand the long-time debated question of energy transduction from the Na+ electrochemical gradient to the transporter.
我们首先提出两种简单的协同转运二聚体模型,它们可能解释了迄今为止在小肠中发表的所有Na(+)-D-葡萄糖协同转运动力学。转运的Na+激活中的S形曲线(正协同性)以及相对于葡萄糖浓度的伊迪-霍夫斯泰因图中的线性向上偏差(负协同性),都可以在变构动力学机制的概念内得到合理解释,该机制对应于涉及顺序或混合协同和顺序构象变化的两种模型中的任何一种。这些模型还分别允许在低底物浓度和高底物浓度下协同转运的化学计量比为2 Na+: 1 S和1 Na+: 1 S,并允许抑制剂或底物类似物的部分抑制。此外,结果表明,二聚体模型相对于该组织中两种不同协同转运体这一似乎被认可的假设可能具有生理优势。接下来,我们使用稳定的膜制剂、快速采样快速过滤装置(FSRFA)的动态方法以及非线性回归和统计分析,对兔肠刷状缘膜囊泡中的Na(+)-D-葡萄糖协同转运动力学进行重新评估。在使用两种不同技术钳制的不同温度、Na+浓度和膜电位条件下,我们证明,由于相对于葡萄糖浓度的转运动力学满足简单的米氏动力学,因此兔空肠刷状缘膜中仅存在一种载体就能完全解释我们的数据。尽管支持协同转运体的单体结构,但这一结论将与先前的动力学数据以及暗示载体蛋白为聚合物结构的最新研究相冲突。因此,我们考虑了多种替代方案,试图使米氏动力学的观察结果与分别与Na+和葡萄糖结合的正协同性和负协同性相关的协同转运变构机制相协调。这些模型意味着通过与变构蛋白配体结合相关的构象变化实现能量储存和释放步骤,为理解从Na+电化学梯度到转运体的能量转导这一长期存在争议的问题提供了一个合理的假设。