Suppr超能文献

蟋蟀原脑对气流刺激反应的钙离子成像

Ca2+ imaging of cricket protocerebrum responses to air current stimulation.

作者信息

Ogawa Hiroto, Kajita Yoriko

机构信息

Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; PREST, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan.

Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan.

出版信息

Neurosci Lett. 2015 Jan 1;584:282-6. doi: 10.1016/j.neulet.2014.10.042. Epub 2014 Nov 3.

Abstract

Crickets (Gryllus bimaculatus) use the cercal sensory system at the rear of the abdomen to detect air currents and direct predator avoidance behavior. Sensory information regarding the direction and dynamic properties of air currents is processed within the terminal abdominal ganglion, and conveyed by ascending giant interneurons (GIs) to higher centers including the brain. However, the brain region responsible for decoding cercal sensory information has not yet been identified, nor the response properties within the brain characterized. In this study, we performed in vivo Ca(2+) imaging to investigate wind-evoked neural activities within the cricket protocerebrum. Ca(2+) responses to air current stimuli were observed at peripheral regions of the ventrolateral neuropile (VLNP) where projection of GIs' axon terminals has been observed in larvae. The wind-evoked Ca(2+) response had temporal dynamics and directional sensitivity that varied with different recorded regions displaying transient or sustained Ca(2+) increases. Individual cells showed Ca(2+) elevation in response to air currents from a specific angle, while stimuli from a different angle evoked decreased signals. Removing the antennae reduced the air-current-evoked responses in VLNP, suggesting contribution of sensory inputs from antennae in addition to the cercal inputs. The VLNP is presumably an integrative center for mechanosensory processing from antennae and cerci where directional information is primarily decoded by protocerebral neurons.

摘要

蟋蟀(双斑蟋)利用腹部后端的尾须感觉系统来检测气流并引导躲避捕食者的行为。有关气流方向和动态特性的感觉信息在腹部末端神经节内进行处理,并由上行巨神经元(GIs)传递到包括大脑在内的更高神经中枢。然而,负责解码尾须感觉信息的脑区尚未确定,大脑内的反应特性也未得到表征。在本研究中,我们进行了活体钙成像,以研究蟋蟀前脑内风诱发的神经活动。在腹外侧神经纤维网(VLNP)的周边区域观察到了对气流刺激的钙反应,在幼虫中已观察到GIs轴突终末的投射。风诱发的钙反应具有随不同记录区域而变化的时间动态和方向敏感性,显示出短暂或持续的钙增加。单个细胞对来自特定角度的气流显示出钙升高,而来自不同角度的刺激则引起信号降低。去除触角会降低VLNP中气流诱发的反应,这表明除了尾须输入外,触角的感觉输入也有贡献。VLNP大概是来自触角和尾须的机械感觉处理的整合中心,其中方向信息主要由前脑神经元解码。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验