Estarellas Carolina, Otyepka Michal, Koča Jaroslav, Banáš Pavel, Krepl Miroslav, Šponer Jiří
CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic.
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic.
Biochim Biophys Acta. 2015 May;1850(5):1072-1090. doi: 10.1016/j.bbagen.2014.10.021. Epub 2014 Oct 24.
Many prokaryotic genomes comprise Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) offering defense against foreign nucleic acids. These immune systems are conditioned by the production of small CRISPR-derived RNAs matured from long RNA precursors. This often requires a Csy4 endoribonuclease cleaving the RNA 3'-end.
We report extended explicit solvent molecular dynamic (MD) simulations of Csy4/RNA complex in precursor and product states, based on X-ray structures of product and inactivated precursor (55 simulations; ~3.7μs in total).
The simulations identify double-protonated His29 and deprotonated terminal phosphate as the likely dominant protonation states consistent with the product structure. We revealed potential substates consistent with Ser148 and His29 acting as the general base and acid, respectively. The Ser148 could be straightforwardly deprotonated through solvent and could without further structural rearrangements deprotonate the nucleophile, contrasting similar studies investigating the general base role of nucleobases in ribozymes. We could not locate geometries consistent with His29 acting as general base. However, we caution that the X-ray structures do not always capture the catalytically active geometries and then the reactive structures may be unreachable by the simulation technique.
We identified potential catalytic arrangement of the Csy4/RNA complex but we also report limitations of the simulation technique. Even for the dominant protonation state we could not achieve full agreement between the simulations and the structural data.
Potential catalytic arrangement of the Csy4/RNA complex is found. Further, we provide unique insights into limitations of simulations of protein/RNA complexes, namely, the influence of the starting experimental structures and force field limitations. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
许多原核生物基因组包含成簇规律间隔短回文重复序列(CRISPRs),可抵御外来核酸。这些免疫系统由从小的CRISPR衍生RNA成熟而来的长RNA前体产生。这通常需要Csy4核糖核酸内切酶切割RNA的3'端。
我们基于产物和失活前体的X射线结构,报告了Csy4/RNA复合物在前体和产物状态下的扩展显式溶剂分子动力学(MD)模拟(55次模拟;总计约3.7微秒)。
模拟确定双质子化的His29和去质子化的末端磷酸根为与产物结构一致的可能主要质子化状态。我们揭示了与Ser148和His29分别作为一般碱和酸一致的潜在亚状态。Ser148可通过溶剂直接去质子化,并且无需进一步的结构重排即可使亲核试剂去质子化,这与研究核碱基在核酶中一般碱作用的类似研究形成对比。我们找不到与His29作为一般碱一致的几何结构。然而,我们提醒,X射线结构并不总是能捕捉到催化活性几何结构,因此反应结构可能无法通过模拟技术获得。
我们确定了Csy4/RNA复合物的潜在催化排列,但也报告了模拟技术的局限性。即使对于主要质子化状态,我们也无法在模拟和结构数据之间达成完全一致。
发现了Csy4/RNA复合物的潜在催化排列。此外,我们对蛋白质/RNA复合物模拟的局限性提供了独特见解,即起始实验结构的影响和力场局限性。本文是名为“分子动力学的最新进展”的特刊的一部分。