Suppr超能文献

Cas6 内切核糖核酸酶介导的 IV 型 CRISPR RNA 生物发生的结构基础。

Structural basis of Type IV CRISPR RNA biogenesis by a Cas6 endoribonuclease.

机构信息

Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA.

出版信息

RNA Biol. 2019 Oct;16(10):1438-1447. doi: 10.1080/15476286.2019.1634965. Epub 2019 Jun 28.

Abstract

Prokaryotic CRISPR-Cas adaptive immune systems rely on small non-coding RNAs derived from CRISPR loci to recognize and destroy complementary nucleic acids. However, the mechanism of Type IV CRISPR RNA (crRNA) biogenesis is poorly understood. To dissect the mechanism of Type IV CRISPR RNA biogenesis, we determined the x-ray crystal structure of the putative Type IV CRISPR associated endoribonuclease Cas6 from ( Cas6-IV) and characterized its enzymatic activity with RNA cleavage assays. We show that Cas6-IV specifically cleaves Type IV crRNA repeats at the 3' side of a predicted stem loop, with a metal-independent, single-turnover mechanism that relies on a histidine and a tyrosine located within the putative endonuclease active site. Structure and sequence alignments with Cas6 orthologs reveal that although Cas6-IV shares little sequence homology with other Cas6 proteins, all share common structural features that bind distinct crRNA repeat sequences. This analysis of Type IV crRNA biogenesis provides a structural and biochemical framework for understanding the similarities and differences of crRNA biogenesis across multi-subunit Class 1 CRISPR immune systems.

摘要

原核生物的 CRISPR-Cas 适应性免疫系统依赖于源自 CRISPR 基因座的小非编码 RNA,以识别和破坏互补的核酸。然而,对 IV 型 CRISPR RNA(crRNA)生物发生机制的了解甚少。为了剖析 IV 型 CRISPR RNA 生物发生的机制,我们确定了 (Cas6-IV)假定的 IV 型 CRISPR 相关内切核酸酶 Cas6 的 x 射线晶体结构,并通过 RNA 切割实验对其酶活性进行了表征。我们表明 Cas6-IV 特异性地在预测的茎环的 3'侧切割 IV 型 crRNA 重复序列,具有金属非依赖性、单轮机制,该机制依赖于位于假定内切核酸酶活性位点内的组氨酸和酪氨酸。与 Cas6 同源物的结构和序列比对表明,尽管 Cas6-IV 与其他 Cas6 蛋白的序列同源性很小,但它们都具有结合不同 crRNA 重复序列的共同结构特征。对 IV 型 crRNA 生物发生的分析为理解多亚基 I 类 CRISPR 免疫防御系统中 crRNA 生物发生的相似性和差异性提供了结构和生化框架。

相似文献

1
Structural basis of Type IV CRISPR RNA biogenesis by a Cas6 endoribonuclease.
RNA Biol. 2019 Oct;16(10):1438-1447. doi: 10.1080/15476286.2019.1634965. Epub 2019 Jun 28.
2
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.
3
Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.
FEBS Lett. 2015 Oct 7;589(20 Pt B):3197-204. doi: 10.1016/j.febslet.2015.09.005. Epub 2015 Sep 10.
4
Cutting it close: CRISPR-associated endoribonuclease structure and function.
Trends Biochem Sci. 2015 Jan;40(1):58-66. doi: 10.1016/j.tibs.2014.10.007. Epub 2014 Nov 18.
5
Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system.
Nucleic Acids Res. 2014 Jun;42(10):6532-41. doi: 10.1093/nar/gku308. Epub 2014 Apr 20.
7
Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases.
Nucleic Acids Res. 2014 Jan;42(2):1341-53. doi: 10.1093/nar/gkt922. Epub 2013 Oct 22.
8
A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition.
Mol Cell. 2018 Nov 15;72(4):700-714.e8. doi: 10.1016/j.molcel.2018.09.013. Epub 2018 Oct 18.
9
Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1.
RNA Biol. 2019 Apr;16(4):492-503. doi: 10.1080/15476286.2018.1514234. Epub 2018 Sep 13.
10

引用本文的文献

1
Structural variation of types IV-A1- and IV-A3-mediated CRISPR interference.
Nat Commun. 2024 Oct 29;15(1):9306. doi: 10.1038/s41467-024-53778-1.
2
Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering.
Science. 2023 Nov 24;382(6673):eadi1910. doi: 10.1126/science.adi1910. Epub 2023 Nov 23.
3
Global phylogenomic novelty of the Cas1 gene from hot spring microbial communities.
Front Microbiol. 2022 Dec 2;13:1069452. doi: 10.3389/fmicb.2022.1069452. eCollection 2022.
4
Evolution of Type IV CRISPR-Cas Systems: Insights from CRISPR Loci in Integrative Conjugative Elements of .
CRISPR J. 2021 Oct;4(5):656-672. doi: 10.1089/crispr.2021.0051. Epub 2021 Sep 28.
5
Positioning Diverse Type IV Structures and Functions Within Class 1 CRISPR-Cas Systems.
Front Microbiol. 2021 May 21;12:671522. doi: 10.3389/fmicb.2021.671522. eCollection 2021.
6
Structure of a type IV CRISPR-Cas ribonucleoprotein complex.
iScience. 2021 Feb 17;24(3):102201. doi: 10.1016/j.isci.2021.102201. eCollection 2021 Mar 19.
7
The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies.
Front Cell Infect Microbiol. 2021 Jan 28;10:619763. doi: 10.3389/fcimb.2020.619763. eCollection 2020.
9
Identification of a Type IV-A CRISPR-Cas System Located Exclusively on Plasmids in .
Front Microbiol. 2020 Aug 12;11:1937. doi: 10.3389/fmicb.2020.01937. eCollection 2020.
10
Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation.
J Biol Chem. 2020 Oct 16;295(42):14473-14487. doi: 10.1074/jbc.REV120.007034. Epub 2020 Aug 14.

本文引用的文献

1
Classification and Nomenclature of CRISPR-Cas Systems: Where from Here?
CRISPR J. 2018 Oct;1(5):325-336. doi: 10.1089/crispr.2018.0033.
2
Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum.
Nat Microbiol. 2019 Jan;4(1):89-96. doi: 10.1038/s41564-018-0274-8. Epub 2018 Nov 5.
3
CRISPR-Cas: Complex Functional Networks and Multiple Roles beyond Adaptive Immunity.
J Mol Biol. 2019 Jan 4;431(1):3-20. doi: 10.1016/j.jmb.2018.08.030. Epub 2018 Sep 5.
4
Mycobacterium tuberculosis type III-A CRISPR/Cas system crRNA and its maturation have atypical features.
FASEB J. 2019 Jan;33(1):1496-1509. doi: 10.1096/fj.201800557RR. Epub 2018 Jul 6.
5
6
Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.
Mol Cell. 2017 Aug 17;67(4):622-632.e4. doi: 10.1016/j.molcel.2017.06.036. Epub 2017 Aug 3.
7
Conformational regulation of CRISPR-associated nucleases.
Curr Opin Microbiol. 2017 Jun;37:110-119. doi: 10.1016/j.mib.2017.05.010. Epub 2017 Jun 21.
8
Diversity, classification and evolution of CRISPR-Cas systems.
Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.
9
Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.
Nature. 2016 Oct 13;538(7624):270-273. doi: 10.1038/nature19802. Epub 2016 Sep 26.
10
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems.
Science. 2016 Aug 5;353(6299):aad5147. doi: 10.1126/science.aad5147.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验