Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, 751 24 Uppsala, Sweden; 3H Biomedical AB, Dag Hammarskjölds väg 34A, Uppsala Science Park, 751 83 Uppsala, Sweden.
Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, 751 24 Uppsala, Sweden.
J Mol Biol. 2015 May 8;427(9):1835-47. doi: 10.1016/j.jmb.2014.10.027. Epub 2014 Nov 14.
Studying the kinetics of translocation of mRNA and tRNAs on the translating ribosome is technically difficult since the rate-limiting steps involve large conformational changes without covalent bond formation or disruption. Here, we have developed a unique assay system for precise estimation of the full translocation cycle time at any position in any type of open reading frame (ORF). Using a buffer system optimized for high accuracy of tRNA selection together with high concentration of elongation factor G, we obtained in vivo compatible translocation rates. We found that translocation was comparatively slow early in the ORF and faster further downstream of the initiation codon. The maximal translocation rate decreased from the in vivo compatible value of 30 s(-1) at 1 mM free Mg2+ concentration to the detrimentally low value of 1 s(-1) at 6 mM free Mg2+ concentration. Thus, high and in vivo compatible accuracy of codon translation, as well as high and in vivo compatible translocation rate, required a remarkably low Mg2+ concentration. Finally, we found that the rate of translocation deep inside an ORF was not significantly affected upon variation of the standard free energy of interaction between a 6-nt upstream Shine-Dalgarno (SD)-like sequence and the anti-SD sequence of 16S rRNA in a range of 0-6 kcal/mol. Based on these experiments, we discuss the optimal choice of Mg2+ concentration for maximal fitness of the living cell by taking its effects on the accuracy of translation, the peptide bond formation rate and the translocation rate into account.
研究 mRNA 和 tRNA 在翻译核糖体上的易位动力学在技术上具有挑战性,因为限速步骤涉及到没有形成或破坏共价键的大构象变化。在这里,我们开发了一种独特的测定系统,可用于精确估计任何类型开放阅读框 (ORF) 中任何位置的完整易位循环时间。使用针对 tRNA 选择高准确度以及高浓度延伸因子 G 优化的缓冲系统,我们获得了与体内兼容的易位速率。我们发现易位在 ORF 早期相对较慢,在起始密码子下游更快。最大易位速率从 1 mM 游离 Mg2+浓度下的 30 s(-1)的体内兼容值降低到 6 mM 游离 Mg2+浓度下的有害低值 1 s(-1)。因此,高且与体内兼容的密码子翻译准确度,以及高且与体内兼容的易位速率,需要非常低的 Mg2+浓度。最后,我们发现,在 6-nt 上游 Shine-Dalgarno (SD) 样序列与 16S rRNA 的反 SD 序列之间的相互作用的标准自由能在 0-6 kcal/mol 的范围内变化时,ORF 内部的易位速率没有明显变化。基于这些实验,我们讨论了在考虑到翻译准确度、肽键形成速率和易位速率对 Mg2+浓度的影响的情况下,活细胞最佳适应度对 Mg2+浓度的最佳选择。