Suppr超能文献

瞬时离子介导的相互作用调节真核生物核糖体中的亚基旋转。

Transient ion-mediated interactions regulate subunit rotation in a eukaryotic ribosome.

作者信息

Wanes George, Mohanty Udayan, Whitford Paul

机构信息

Center for Theoretical Biological Physics, Northeastern University, Boston.

Department of Physics, Northeastern University, Boston.

出版信息

bioRxiv. 2025 Aug 12:2025.08.09.669508. doi: 10.1101/2025.08.09.669508.

Abstract

While it is known that ions are required for folding of RNA, little is known about how transient/probabilistic ionic interactions facilitate biologically-relevant conformational rearrangements. To address this, we developed a theoretical model that employs all-atom resolution, with a simplified representation of biomolecular energetics, explicit electrostatics and ions (K, Cl, Mg). For well-studied RNA systems (58-mer and Ade riboswitch), the model accurately describes the concentration-dependent ionic environment, including (bidentate) chelated and hydrated (diffuse/outer-shell) ions. With this foundation, we applied the model to simulate the yeast ribosome and quantified the ion-dependent energy landscape of intersubunit rotation. These calculations show how the energetics of rotation responds to millimolar changes in [MgCl], which shift the distribution between rotation states and alter the kinetics by more than an order of magnitude. We find that this response to the ionic concentration correlates with formation and breakage of ion-mediated interactions (inner-shell and outer-shell) between the ribosomal subunits. This analysis provides a physical basis for understanding how transient ion-mediated interactions can regulate a large-scale biological process.

摘要

虽然已知离子是RNA折叠所必需的,但对于瞬时/概率性离子相互作用如何促进与生物学相关的构象重排却知之甚少。为了解决这个问题,我们开发了一个理论模型,该模型采用全原子分辨率,对生物分子能量学进行简化表示,并明确考虑静电作用和离子(K、Cl、Mg)。对于经过充分研究的RNA系统(58聚体和腺嘌呤核糖开关),该模型准确描述了浓度依赖性离子环境,包括(双齿)螯合离子和水合(扩散/外层)离子。在此基础上,我们应用该模型模拟酵母核糖体,并量化了亚基间旋转的离子依赖性能量景观。这些计算表明,旋转能量如何响应[MgCl]中毫摩尔级的变化,这种变化会改变旋转状态之间的分布,并使动力学改变超过一个数量级。我们发现,这种对离子浓度的响应与核糖体亚基之间离子介导的相互作用(内层和外层)的形成和断裂相关。该分析为理解瞬时离子介导的相互作用如何调节大规模生物过程提供了物理基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec5/12363776/802b1b91863b/nihpp-2025.08.09.669508v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验