Suppr超能文献

核苷酸交换因子RCC1的半胱氨酸氧化对ran系统的破坏。

Disruption of the ran system by cysteine oxidation of the nucleotide exchange factor RCC1.

作者信息

Chatterjee Mandovi, Paschal Bryce M

机构信息

Center for Cell Signaling, University of Virginia, Charlottesville, Virginia Department of Cell Biology, University of Virginia, Charlottesville, Virginia.

Center for Cell Signaling, University of Virginia, Charlottesville, Virginia Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia

出版信息

Mol Cell Biol. 2015 Feb;35(3):566-81. doi: 10.1128/MCB.01133-14. Epub 2014 Dec 1.

Abstract

Transport regulation by the Ran GTPase requires its nuclear localization and GTP loading by the chromatin-associated exchange factor RCC1. These reactions generate Ran protein and Ran nucleotide gradients between the nucleus and the cytoplasm. Cellular stress disrupts the Ran gradients, but the specific mechanisms underlying this disruption have not been elucidated. We used biochemical approaches to determine how oxidative stress disrupts the Ran system. RCC1 exchange activity was reduced by diamide-induced oxidative stress and restored with dithiothreitol. Using mass spectrometry, we found that multiple solvent-exposed cysteines in RCC1 are oxidized in cells treated with diamide. The cysteines oxidized in RCC1 included Cys93, which is solvent exposed and unique because it becomes buried upon contact with Ran. A Cys93Ser substitution dramatically reduced exchange activity through an effect on RCC1 binding to RanGDP. Diamide treatment reduced the size of the mobile fraction of RCC1-green fluorescent protein in cells and inhibited nuclear import in digitonin-permeabilized cell assays. The Ran protein gradient was also disrupted by UV-induced stress but without affecting RCC1 exchange activity. Our data suggest that stress can disrupt the Ran gradients through RCC1-dependent and RCC1-independent mechanisms, possibly dependent on the particular stress condition.

摘要

Ran GTP酶介导的转运调控需要其在细胞核内定位,并通过与染色质相关的交换因子RCC1进行GTP加载。这些反应在细胞核和细胞质之间产生Ran蛋白和Ran核苷酸梯度。细胞应激会破坏Ran梯度,但这种破坏背后的具体机制尚未阐明。我们使用生化方法来确定氧化应激如何破坏Ran系统。二酰胺诱导的氧化应激会降低RCC1的交换活性,而二硫苏糖醇可使其恢复。通过质谱分析,我们发现用二酰胺处理的细胞中,RCC1中多个暴露于溶剂的半胱氨酸被氧化。RCC1中被氧化的半胱氨酸包括Cys93,它暴露于溶剂且具有独特性,因为它在与Ran接触时会被掩埋。Cys93Ser取代通过影响RCC1与RanGDP的结合,显著降低了交换活性。二酰胺处理减小了细胞中RCC1-绿色荧光蛋白的可移动部分的大小,并在洋地黄皂苷通透细胞试验中抑制了核输入。紫外线诱导的应激也会破坏Ran蛋白梯度,但不影响RCC1的交换活性。我们的数据表明,应激可能通过依赖RCC1和不依赖RCC1的机制破坏Ran梯度,这可能取决于特定的应激条件。

相似文献

1
Disruption of the ran system by cysteine oxidation of the nucleotide exchange factor RCC1.
Mol Cell Biol. 2015 Feb;35(3):566-81. doi: 10.1128/MCB.01133-14. Epub 2014 Dec 1.
2
Cell cycle-dependent binding modes of the ran exchange factor RCC1 to chromatin.
Biophys J. 2013 Apr 16;104(8):1642-51. doi: 10.1016/j.bpj.2013.03.024.
3
Nuclear import of the ran exchange factor, RCC1, is mediated by at least two distinct mechanisms.
J Cell Biol. 2000 May 15;149(4):835-50. doi: 10.1083/jcb.149.4.835.
5
Hyperosmotic stress signaling to the nucleus disrupts the Ran gradient and the production of RanGTP.
Mol Biol Cell. 2007 Nov;18(11):4365-76. doi: 10.1091/mbc.e07-01-0089. Epub 2007 Aug 29.
6
RanBP1 controls the Ran pathway in mammalian cells through regulation of mitotic RCC1 dynamics.
Cell Cycle. 2020 Aug;19(15):1899-1916. doi: 10.1080/15384101.2020.1782036. Epub 2020 Jun 28.
7
RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence.
Mol Biol Cell. 2016 Apr 15;27(8):1346-57. doi: 10.1091/mbc.E16-01-0025. Epub 2016 Feb 10.
8
The dynamic association of RCC1 with chromatin is modulated by Ran-dependent nuclear transport.
Mol Biol Cell. 2004 Jan;15(1):245-55. doi: 10.1091/mbc.e03-06-0409. Epub 2003 Oct 17.
9

引用本文的文献

3
Methods to separate nuclear soluble fractions reflecting localizations in living cells.
iScience. 2021 Nov 25;24(12):103503. doi: 10.1016/j.isci.2021.103503. eCollection 2021 Dec 17.
5
Increased nuclear permeability is a driver for age-related motoneuron loss.
Geroscience. 2020 Jun;42(3):833-847. doi: 10.1007/s11357-020-00155-7. Epub 2020 Jan 30.
6
Poor old pores-The challenge of making and maintaining nuclear pore complexes in aging.
FEBS J. 2020 Mar;287(6):1058-1075. doi: 10.1111/febs.15205. Epub 2020 Jan 23.
7
Mining for protein S-sulfenylation in uncovers redox-sensitive sites.
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):21256-21261. doi: 10.1073/pnas.1906768116. Epub 2019 Oct 2.
8
Fluorescence-based quantification of nucleocytoplasmic transport.
Methods. 2019 Mar 15;157:106-114. doi: 10.1016/j.ymeth.2018.11.002. Epub 2018 Nov 10.
9
Survive or thrive: tradeoff strategy for cellular senescence.
Exp Mol Med. 2017 Jun 2;49(6):e342. doi: 10.1038/emm.2017.94.
10
Inside out: the role of nucleocytoplasmic transport in ALS and FTLD.
Acta Neuropathol. 2016 Aug;132(2):159-173. doi: 10.1007/s00401-016-1586-5. Epub 2016 Jun 6.

本文引用的文献

1
A pathway linking oxidative stress and the Ran GTPase system in progeria.
Mol Biol Cell. 2014 Apr;25(8):1202-15. doi: 10.1091/mbc.E13-07-0430. Epub 2014 Feb 12.
2
Defective nuclear import of Tpr in Progeria reflects the Ran sensitivity of large cargo transport.
J Cell Biol. 2013 May 13;201(4):541-57. doi: 10.1083/jcb.201212117. Epub 2013 May 6.
4
Structure of RCC1 chromatin factor bound to the nucleosome core particle.
Nature. 2010 Sep 30;467(7315):562-6. doi: 10.1038/nature09321. Epub 2010 Aug 25.
5
RCC1 uses a conformationally diverse loop region to interact with the nucleosome: a model for the RCC1-nucleosome complex.
J Mol Biol. 2010 May 14;398(4):518-29. doi: 10.1016/j.jmb.2010.03.037. Epub 2010 Mar 27.
6
Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients.
Mech Ageing Dev. 2010 Jan;131(1):2-8. doi: 10.1016/j.mad.2009.11.006. Epub 2009 Dec 1.
8
Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport.
Nat Struct Mol Biol. 2009 Oct;16(10):1026-35. doi: 10.1038/nsmb.1656. Epub 2009 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验